A combined experimental-computational approach uncovers a role for the Golgi matrix protein Giantin in breast cancer progression

Our understanding of how speed and persistence of cell migration affects the growth rate and size of tumors remains incomplete. To address this, we developed a mathematical model wherein cells migrate in two-dimensional space, divide, die or intravasate into the vasculature. Exploring a wide range o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2023
Hauptverfasser: Ghannoum, Salim, Fantini, Damiano, Zahoor, Muhammad, Reiterer, Veronika, Phuyal, Santosh, Leoncio Netto, Waldir, Sørensen, Øystein, Iyer, Arvind, Sengupta, Debarka, Prasmickaite, Lina, Mælandsmo, Gunhild Mari, Kohn Luque, Alvaro, Farhan, Hesso
Format: Artikel
Sprache:nor
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title PLoS computational biology
container_volume
creator Ghannoum, Salim
Fantini, Damiano
Zahoor, Muhammad
Reiterer, Veronika
Phuyal, Santosh
Leoncio Netto, Waldir
Sørensen, Øystein
Iyer, Arvind
Sengupta, Debarka
Prasmickaite, Lina
Mælandsmo, Gunhild Mari
Kohn Luque, Alvaro
Farhan, Hesso
description Our understanding of how speed and persistence of cell migration affects the growth rate and size of tumors remains incomplete. To address this, we developed a mathematical model wherein cells migrate in two-dimensional space, divide, die or intravasate into the vasculature. Exploring a wide range of speed and persistence combinations, we find that tumor growth positively correlates with increasing speed and higher persistence. As a biologically relevant example, we focused on Golgi fragmentation, a phenomenon often linked to alterations of cell migration. Golgi fragmentation was induced by depletion of Giantin, a Golgi matrix protein, the downregulation of which correlates with poor patient survival. Applying the experimentally obtained migration and invasion traits of Giantin depleted breast cancer cells to our mathematical model, we predict that loss of Giantin increases the number of intravasating cells. This prediction was validated, by showing that circulating tumor cells express significantly less Giantin than primary tumor cells. Altogether, our computational model identifies cell migration traits that regulate tumor progression and uncovers a role of Giantin in breast cancer progression.
format Article
fullrecord <record><control><sourceid>cristin</sourceid><recordid>TN_cdi_cristin_nora_10852_103228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10852_103228</sourcerecordid><originalsourceid>FETCH-cristin_nora_10852_1032283</originalsourceid><addsrcrecordid>eNqNjM0KwjAQhIMoWH_eYV-g0B-r9Sii9QE8eCtrXNtImpRNFI8-uhHEszDsDMO3MxBRWhR5vMqLcvjLi9NYTJy7JUmo18tIvDYgbXdWhi5Az55YdWQ86ji0_d2jV9agBux7tihbuBtpH8QOENhqgqtl8C1BZXWjoEPP6gmB9aQMVAqNDx50ZkLnQaKRxB-gYXIujM_E6Ira0fzrUwH73XF7iCUrF55rYxnrNCmLLNw8y8r8D-QNCt9Ptw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A combined experimental-computational approach uncovers a role for the Golgi matrix protein Giantin in breast cancer progression</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>NORA - Norwegian Open Research Archives</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Ghannoum, Salim ; Fantini, Damiano ; Zahoor, Muhammad ; Reiterer, Veronika ; Phuyal, Santosh ; Leoncio Netto, Waldir ; Sørensen, Øystein ; Iyer, Arvind ; Sengupta, Debarka ; Prasmickaite, Lina ; Mælandsmo, Gunhild Mari ; Kohn Luque, Alvaro ; Farhan, Hesso</creator><creatorcontrib>Ghannoum, Salim ; Fantini, Damiano ; Zahoor, Muhammad ; Reiterer, Veronika ; Phuyal, Santosh ; Leoncio Netto, Waldir ; Sørensen, Øystein ; Iyer, Arvind ; Sengupta, Debarka ; Prasmickaite, Lina ; Mælandsmo, Gunhild Mari ; Kohn Luque, Alvaro ; Farhan, Hesso</creatorcontrib><description>Our understanding of how speed and persistence of cell migration affects the growth rate and size of tumors remains incomplete. To address this, we developed a mathematical model wherein cells migrate in two-dimensional space, divide, die or intravasate into the vasculature. Exploring a wide range of speed and persistence combinations, we find that tumor growth positively correlates with increasing speed and higher persistence. As a biologically relevant example, we focused on Golgi fragmentation, a phenomenon often linked to alterations of cell migration. Golgi fragmentation was induced by depletion of Giantin, a Golgi matrix protein, the downregulation of which correlates with poor patient survival. Applying the experimentally obtained migration and invasion traits of Giantin depleted breast cancer cells to our mathematical model, we predict that loss of Giantin increases the number of intravasating cells. This prediction was validated, by showing that circulating tumor cells express significantly less Giantin than primary tumor cells. Altogether, our computational model identifies cell migration traits that regulate tumor progression and uncovers a role of Giantin in breast cancer progression.</description><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><language>nor</language><publisher>Public Library of Science (PLoS)</publisher><ispartof>PLoS computational biology, 2023</ispartof><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,4010,26544</link.rule.ids></links><search><creatorcontrib>Ghannoum, Salim</creatorcontrib><creatorcontrib>Fantini, Damiano</creatorcontrib><creatorcontrib>Zahoor, Muhammad</creatorcontrib><creatorcontrib>Reiterer, Veronika</creatorcontrib><creatorcontrib>Phuyal, Santosh</creatorcontrib><creatorcontrib>Leoncio Netto, Waldir</creatorcontrib><creatorcontrib>Sørensen, Øystein</creatorcontrib><creatorcontrib>Iyer, Arvind</creatorcontrib><creatorcontrib>Sengupta, Debarka</creatorcontrib><creatorcontrib>Prasmickaite, Lina</creatorcontrib><creatorcontrib>Mælandsmo, Gunhild Mari</creatorcontrib><creatorcontrib>Kohn Luque, Alvaro</creatorcontrib><creatorcontrib>Farhan, Hesso</creatorcontrib><title>A combined experimental-computational approach uncovers a role for the Golgi matrix protein Giantin in breast cancer progression</title><title>PLoS computational biology</title><description>Our understanding of how speed and persistence of cell migration affects the growth rate and size of tumors remains incomplete. To address this, we developed a mathematical model wherein cells migrate in two-dimensional space, divide, die or intravasate into the vasculature. Exploring a wide range of speed and persistence combinations, we find that tumor growth positively correlates with increasing speed and higher persistence. As a biologically relevant example, we focused on Golgi fragmentation, a phenomenon often linked to alterations of cell migration. Golgi fragmentation was induced by depletion of Giantin, a Golgi matrix protein, the downregulation of which correlates with poor patient survival. Applying the experimentally obtained migration and invasion traits of Giantin depleted breast cancer cells to our mathematical model, we predict that loss of Giantin increases the number of intravasating cells. This prediction was validated, by showing that circulating tumor cells express significantly less Giantin than primary tumor cells. Altogether, our computational model identifies cell migration traits that regulate tumor progression and uncovers a role of Giantin in breast cancer progression.</description><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNqNjM0KwjAQhIMoWH_eYV-g0B-r9Sii9QE8eCtrXNtImpRNFI8-uhHEszDsDMO3MxBRWhR5vMqLcvjLi9NYTJy7JUmo18tIvDYgbXdWhi5Az55YdWQ86ji0_d2jV9agBux7tihbuBtpH8QOENhqgqtl8C1BZXWjoEPP6gmB9aQMVAqNDx50ZkLnQaKRxB-gYXIujM_E6Ira0fzrUwH73XF7iCUrF55rYxnrNCmLLNw8y8r8D-QNCt9Ptw</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Ghannoum, Salim</creator><creator>Fantini, Damiano</creator><creator>Zahoor, Muhammad</creator><creator>Reiterer, Veronika</creator><creator>Phuyal, Santosh</creator><creator>Leoncio Netto, Waldir</creator><creator>Sørensen, Øystein</creator><creator>Iyer, Arvind</creator><creator>Sengupta, Debarka</creator><creator>Prasmickaite, Lina</creator><creator>Mælandsmo, Gunhild Mari</creator><creator>Kohn Luque, Alvaro</creator><creator>Farhan, Hesso</creator><general>Public Library of Science (PLoS)</general><scope>3HK</scope></search><sort><creationdate>2023</creationdate><title>A combined experimental-computational approach uncovers a role for the Golgi matrix protein Giantin in breast cancer progression</title><author>Ghannoum, Salim ; Fantini, Damiano ; Zahoor, Muhammad ; Reiterer, Veronika ; Phuyal, Santosh ; Leoncio Netto, Waldir ; Sørensen, Øystein ; Iyer, Arvind ; Sengupta, Debarka ; Prasmickaite, Lina ; Mælandsmo, Gunhild Mari ; Kohn Luque, Alvaro ; Farhan, Hesso</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-cristin_nora_10852_1032283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>nor</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghannoum, Salim</creatorcontrib><creatorcontrib>Fantini, Damiano</creatorcontrib><creatorcontrib>Zahoor, Muhammad</creatorcontrib><creatorcontrib>Reiterer, Veronika</creatorcontrib><creatorcontrib>Phuyal, Santosh</creatorcontrib><creatorcontrib>Leoncio Netto, Waldir</creatorcontrib><creatorcontrib>Sørensen, Øystein</creatorcontrib><creatorcontrib>Iyer, Arvind</creatorcontrib><creatorcontrib>Sengupta, Debarka</creatorcontrib><creatorcontrib>Prasmickaite, Lina</creatorcontrib><creatorcontrib>Mælandsmo, Gunhild Mari</creatorcontrib><creatorcontrib>Kohn Luque, Alvaro</creatorcontrib><creatorcontrib>Farhan, Hesso</creatorcontrib><collection>NORA - Norwegian Open Research Archives</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghannoum, Salim</au><au>Fantini, Damiano</au><au>Zahoor, Muhammad</au><au>Reiterer, Veronika</au><au>Phuyal, Santosh</au><au>Leoncio Netto, Waldir</au><au>Sørensen, Øystein</au><au>Iyer, Arvind</au><au>Sengupta, Debarka</au><au>Prasmickaite, Lina</au><au>Mælandsmo, Gunhild Mari</au><au>Kohn Luque, Alvaro</au><au>Farhan, Hesso</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A combined experimental-computational approach uncovers a role for the Golgi matrix protein Giantin in breast cancer progression</atitle><jtitle>PLoS computational biology</jtitle><date>2023</date><risdate>2023</risdate><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Our understanding of how speed and persistence of cell migration affects the growth rate and size of tumors remains incomplete. To address this, we developed a mathematical model wherein cells migrate in two-dimensional space, divide, die or intravasate into the vasculature. Exploring a wide range of speed and persistence combinations, we find that tumor growth positively correlates with increasing speed and higher persistence. As a biologically relevant example, we focused on Golgi fragmentation, a phenomenon often linked to alterations of cell migration. Golgi fragmentation was induced by depletion of Giantin, a Golgi matrix protein, the downregulation of which correlates with poor patient survival. Applying the experimentally obtained migration and invasion traits of Giantin depleted breast cancer cells to our mathematical model, we predict that loss of Giantin increases the number of intravasating cells. This prediction was validated, by showing that circulating tumor cells express significantly less Giantin than primary tumor cells. Altogether, our computational model identifies cell migration traits that regulate tumor progression and uncovers a role of Giantin in breast cancer progression.</abstract><pub>Public Library of Science (PLoS)</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-734X
ispartof PLoS computational biology, 2023
issn 1553-734X
1553-7358
language nor
recordid cdi_cristin_nora_10852_103228
source Public Library of Science (PLoS) Journals Open Access; NORA - Norwegian Open Research Archives; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
title A combined experimental-computational approach uncovers a role for the Golgi matrix protein Giantin in breast cancer progression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A32%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cristin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20combined%20experimental-computational%20approach%20uncovers%20a%20role%20for%20the%20Golgi%20matrix%20protein%20Giantin%20in%20breast%20cancer%20progression&rft.jtitle=PLoS%20computational%20biology&rft.au=Ghannoum,%20Salim&rft.date=2023&rft.issn=1553-734X&rft.eissn=1553-7358&rft_id=info:doi/&rft_dat=%3Ccristin%3E10852_103228%3C/cristin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true