A combined experimental-computational approach uncovers a role for the Golgi matrix protein Giantin in breast cancer progression
Our understanding of how speed and persistence of cell migration affects the growth rate and size of tumors remains incomplete. To address this, we developed a mathematical model wherein cells migrate in two-dimensional space, divide, die or intravasate into the vasculature. Exploring a wide range o...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2023 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | nor |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | PLoS computational biology |
container_volume | |
creator | Ghannoum, Salim Fantini, Damiano Zahoor, Muhammad Reiterer, Veronika Phuyal, Santosh Leoncio Netto, Waldir Sørensen, Øystein Iyer, Arvind Sengupta, Debarka Prasmickaite, Lina Mælandsmo, Gunhild Mari Kohn Luque, Alvaro Farhan, Hesso |
description | Our understanding of how speed and persistence of cell migration affects the growth rate and size of tumors remains incomplete. To address this, we developed a mathematical model wherein cells migrate in two-dimensional space, divide, die or intravasate into the vasculature. Exploring a wide range of speed and persistence combinations, we find that tumor growth positively correlates with increasing speed and higher persistence. As a biologically relevant example, we focused on Golgi fragmentation, a phenomenon often linked to alterations of cell migration. Golgi fragmentation was induced by depletion of Giantin, a Golgi matrix protein, the downregulation of which correlates with poor patient survival. Applying the experimentally obtained migration and invasion traits of Giantin depleted breast cancer cells to our mathematical model, we predict that loss of Giantin increases the number of intravasating cells. This prediction was validated, by showing that circulating tumor cells express significantly less Giantin than primary tumor cells. Altogether, our computational model identifies cell migration traits that regulate tumor progression and uncovers a role of Giantin in breast cancer progression. |
format | Article |
fullrecord | <record><control><sourceid>cristin</sourceid><recordid>TN_cdi_cristin_nora_10852_103228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10852_103228</sourcerecordid><originalsourceid>FETCH-cristin_nora_10852_1032283</originalsourceid><addsrcrecordid>eNqNjM0KwjAQhIMoWH_eYV-g0B-r9Sii9QE8eCtrXNtImpRNFI8-uhHEszDsDMO3MxBRWhR5vMqLcvjLi9NYTJy7JUmo18tIvDYgbXdWhi5Az55YdWQ86ji0_d2jV9agBux7tihbuBtpH8QOENhqgqtl8C1BZXWjoEPP6gmB9aQMVAqNDx50ZkLnQaKRxB-gYXIujM_E6Ira0fzrUwH73XF7iCUrF55rYxnrNCmLLNw8y8r8D-QNCt9Ptw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A combined experimental-computational approach uncovers a role for the Golgi matrix protein Giantin in breast cancer progression</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>NORA - Norwegian Open Research Archives</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Ghannoum, Salim ; Fantini, Damiano ; Zahoor, Muhammad ; Reiterer, Veronika ; Phuyal, Santosh ; Leoncio Netto, Waldir ; Sørensen, Øystein ; Iyer, Arvind ; Sengupta, Debarka ; Prasmickaite, Lina ; Mælandsmo, Gunhild Mari ; Kohn Luque, Alvaro ; Farhan, Hesso</creator><creatorcontrib>Ghannoum, Salim ; Fantini, Damiano ; Zahoor, Muhammad ; Reiterer, Veronika ; Phuyal, Santosh ; Leoncio Netto, Waldir ; Sørensen, Øystein ; Iyer, Arvind ; Sengupta, Debarka ; Prasmickaite, Lina ; Mælandsmo, Gunhild Mari ; Kohn Luque, Alvaro ; Farhan, Hesso</creatorcontrib><description>Our understanding of how speed and persistence of cell migration affects the growth rate and size of tumors remains incomplete. To address this, we developed a mathematical model wherein cells migrate in two-dimensional space, divide, die or intravasate into the vasculature. Exploring a wide range of speed and persistence combinations, we find that tumor growth positively correlates with increasing speed and higher persistence. As a biologically relevant example, we focused on Golgi fragmentation, a phenomenon often linked to alterations of cell migration. Golgi fragmentation was induced by depletion of Giantin, a Golgi matrix protein, the downregulation of which correlates with poor patient survival. Applying the experimentally obtained migration and invasion traits of Giantin depleted breast cancer cells to our mathematical model, we predict that loss of Giantin increases the number of intravasating cells. This prediction was validated, by showing that circulating tumor cells express significantly less Giantin than primary tumor cells. Altogether, our computational model identifies cell migration traits that regulate tumor progression and uncovers a role of Giantin in breast cancer progression.</description><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><language>nor</language><publisher>Public Library of Science (PLoS)</publisher><ispartof>PLoS computational biology, 2023</ispartof><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,4010,26544</link.rule.ids></links><search><creatorcontrib>Ghannoum, Salim</creatorcontrib><creatorcontrib>Fantini, Damiano</creatorcontrib><creatorcontrib>Zahoor, Muhammad</creatorcontrib><creatorcontrib>Reiterer, Veronika</creatorcontrib><creatorcontrib>Phuyal, Santosh</creatorcontrib><creatorcontrib>Leoncio Netto, Waldir</creatorcontrib><creatorcontrib>Sørensen, Øystein</creatorcontrib><creatorcontrib>Iyer, Arvind</creatorcontrib><creatorcontrib>Sengupta, Debarka</creatorcontrib><creatorcontrib>Prasmickaite, Lina</creatorcontrib><creatorcontrib>Mælandsmo, Gunhild Mari</creatorcontrib><creatorcontrib>Kohn Luque, Alvaro</creatorcontrib><creatorcontrib>Farhan, Hesso</creatorcontrib><title>A combined experimental-computational approach uncovers a role for the Golgi matrix protein Giantin in breast cancer progression</title><title>PLoS computational biology</title><description>Our understanding of how speed and persistence of cell migration affects the growth rate and size of tumors remains incomplete. To address this, we developed a mathematical model wherein cells migrate in two-dimensional space, divide, die or intravasate into the vasculature. Exploring a wide range of speed and persistence combinations, we find that tumor growth positively correlates with increasing speed and higher persistence. As a biologically relevant example, we focused on Golgi fragmentation, a phenomenon often linked to alterations of cell migration. Golgi fragmentation was induced by depletion of Giantin, a Golgi matrix protein, the downregulation of which correlates with poor patient survival. Applying the experimentally obtained migration and invasion traits of Giantin depleted breast cancer cells to our mathematical model, we predict that loss of Giantin increases the number of intravasating cells. This prediction was validated, by showing that circulating tumor cells express significantly less Giantin than primary tumor cells. Altogether, our computational model identifies cell migration traits that regulate tumor progression and uncovers a role of Giantin in breast cancer progression.</description><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNqNjM0KwjAQhIMoWH_eYV-g0B-r9Sii9QE8eCtrXNtImpRNFI8-uhHEszDsDMO3MxBRWhR5vMqLcvjLi9NYTJy7JUmo18tIvDYgbXdWhi5Az55YdWQ86ji0_d2jV9agBux7tihbuBtpH8QOENhqgqtl8C1BZXWjoEPP6gmB9aQMVAqNDx50ZkLnQaKRxB-gYXIujM_E6Ira0fzrUwH73XF7iCUrF55rYxnrNCmLLNw8y8r8D-QNCt9Ptw</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Ghannoum, Salim</creator><creator>Fantini, Damiano</creator><creator>Zahoor, Muhammad</creator><creator>Reiterer, Veronika</creator><creator>Phuyal, Santosh</creator><creator>Leoncio Netto, Waldir</creator><creator>Sørensen, Øystein</creator><creator>Iyer, Arvind</creator><creator>Sengupta, Debarka</creator><creator>Prasmickaite, Lina</creator><creator>Mælandsmo, Gunhild Mari</creator><creator>Kohn Luque, Alvaro</creator><creator>Farhan, Hesso</creator><general>Public Library of Science (PLoS)</general><scope>3HK</scope></search><sort><creationdate>2023</creationdate><title>A combined experimental-computational approach uncovers a role for the Golgi matrix protein Giantin in breast cancer progression</title><author>Ghannoum, Salim ; Fantini, Damiano ; Zahoor, Muhammad ; Reiterer, Veronika ; Phuyal, Santosh ; Leoncio Netto, Waldir ; Sørensen, Øystein ; Iyer, Arvind ; Sengupta, Debarka ; Prasmickaite, Lina ; Mælandsmo, Gunhild Mari ; Kohn Luque, Alvaro ; Farhan, Hesso</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-cristin_nora_10852_1032283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>nor</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghannoum, Salim</creatorcontrib><creatorcontrib>Fantini, Damiano</creatorcontrib><creatorcontrib>Zahoor, Muhammad</creatorcontrib><creatorcontrib>Reiterer, Veronika</creatorcontrib><creatorcontrib>Phuyal, Santosh</creatorcontrib><creatorcontrib>Leoncio Netto, Waldir</creatorcontrib><creatorcontrib>Sørensen, Øystein</creatorcontrib><creatorcontrib>Iyer, Arvind</creatorcontrib><creatorcontrib>Sengupta, Debarka</creatorcontrib><creatorcontrib>Prasmickaite, Lina</creatorcontrib><creatorcontrib>Mælandsmo, Gunhild Mari</creatorcontrib><creatorcontrib>Kohn Luque, Alvaro</creatorcontrib><creatorcontrib>Farhan, Hesso</creatorcontrib><collection>NORA - Norwegian Open Research Archives</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghannoum, Salim</au><au>Fantini, Damiano</au><au>Zahoor, Muhammad</au><au>Reiterer, Veronika</au><au>Phuyal, Santosh</au><au>Leoncio Netto, Waldir</au><au>Sørensen, Øystein</au><au>Iyer, Arvind</au><au>Sengupta, Debarka</au><au>Prasmickaite, Lina</au><au>Mælandsmo, Gunhild Mari</au><au>Kohn Luque, Alvaro</au><au>Farhan, Hesso</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A combined experimental-computational approach uncovers a role for the Golgi matrix protein Giantin in breast cancer progression</atitle><jtitle>PLoS computational biology</jtitle><date>2023</date><risdate>2023</risdate><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Our understanding of how speed and persistence of cell migration affects the growth rate and size of tumors remains incomplete. To address this, we developed a mathematical model wherein cells migrate in two-dimensional space, divide, die or intravasate into the vasculature. Exploring a wide range of speed and persistence combinations, we find that tumor growth positively correlates with increasing speed and higher persistence. As a biologically relevant example, we focused on Golgi fragmentation, a phenomenon often linked to alterations of cell migration. Golgi fragmentation was induced by depletion of Giantin, a Golgi matrix protein, the downregulation of which correlates with poor patient survival. Applying the experimentally obtained migration and invasion traits of Giantin depleted breast cancer cells to our mathematical model, we predict that loss of Giantin increases the number of intravasating cells. This prediction was validated, by showing that circulating tumor cells express significantly less Giantin than primary tumor cells. Altogether, our computational model identifies cell migration traits that regulate tumor progression and uncovers a role of Giantin in breast cancer progression.</abstract><pub>Public Library of Science (PLoS)</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-734X |
ispartof | PLoS computational biology, 2023 |
issn | 1553-734X 1553-7358 |
language | nor |
recordid | cdi_cristin_nora_10852_103228 |
source | Public Library of Science (PLoS) Journals Open Access; NORA - Norwegian Open Research Archives; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
title | A combined experimental-computational approach uncovers a role for the Golgi matrix protein Giantin in breast cancer progression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A32%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cristin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20combined%20experimental-computational%20approach%20uncovers%20a%20role%20for%20the%20Golgi%20matrix%20protein%20Giantin%20in%20breast%20cancer%20progression&rft.jtitle=PLoS%20computational%20biology&rft.au=Ghannoum,%20Salim&rft.date=2023&rft.issn=1553-734X&rft.eissn=1553-7358&rft_id=info:doi/&rft_dat=%3Ccristin%3E10852_103228%3C/cristin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |