Primitivity of some full group C-algebras
We show that the full group C*-algebra of the free product of two nontrivial countable amenable discrete groups, where at least one of them has more than two elements, is primitive. We also show that in many cases, this C*-algebra is antiliminary and has an uncountable family of pairwise inequivalen...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Report |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Bedos, Erik Christopher Omland, Tron Ånen |
description | We show that the full group C*-algebra of the free product of two nontrivial countable amenable discrete groups, where at least one of them has more than two elements, is primitive. We also show that in many cases, this C*-algebra is antiliminary and has an uncountable family of pairwise inequivalent, faithful irreducible representations. |
format | Report |
fullrecord | <record><control><sourceid>cristin_3HK</sourceid><recordid>TN_cdi_cristin_nora_10852_10220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10852_10220</sourcerecordid><originalsourceid>FETCH-cristin_nora_10852_102203</originalsourceid><addsrcrecordid>eNrjZNAMKMrMzSzJLMssqVTIT1Mozs9NVUgrzclRSC_KLy1QcNZNzElPTSpKLOZhYE1LzClO5YXS3Azybq4hzh66yUWZxSWZefF5-UWJ8YYGFqZGQNLIyMCYsAoASwYnNA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>Primitivity of some full group C-algebras</title><source>NORA - Norwegian Open Research Archives</source><creator>Bedos, Erik Christopher ; Omland, Tron Ånen</creator><creatorcontrib>Bedos, Erik Christopher ; Omland, Tron Ånen</creatorcontrib><description>We show that the full group C*-algebra of the free product of two nontrivial countable amenable discrete groups, where at least one of them has more than two elements, is primitive. We also show that in many cases, this C*-algebra is antiliminary and has an uncountable family of pairwise inequivalent, faithful irreducible representations.</description><language>eng</language><publisher>Matematisk Institutt, Universitetet i Oslo</publisher><creationdate>2010</creationdate><rights>info:eu-repo/semantics/openAccess</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,778,883,4478,26554</link.rule.ids><linktorsrc>$$Uhttp://hdl.handle.net/10852/10220$$EView_record_in_NORA$$FView_record_in_$$GNORA$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Bedos, Erik Christopher</creatorcontrib><creatorcontrib>Omland, Tron Ånen</creatorcontrib><title>Primitivity of some full group C-algebras</title><description>We show that the full group C*-algebra of the free product of two nontrivial countable amenable discrete groups, where at least one of them has more than two elements, is primitive. We also show that in many cases, this C*-algebra is antiliminary and has an uncountable family of pairwise inequivalent, faithful irreducible representations.</description><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>2010</creationdate><recordtype>report</recordtype><sourceid>3HK</sourceid><recordid>eNrjZNAMKMrMzSzJLMssqVTIT1Mozs9NVUgrzclRSC_KLy1QcNZNzElPTSpKLOZhYE1LzClO5YXS3Azybq4hzh66yUWZxSWZefF5-UWJ8YYGFqZGQNLIyMCYsAoASwYnNA</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Bedos, Erik Christopher</creator><creator>Omland, Tron Ånen</creator><general>Matematisk Institutt, Universitetet i Oslo</general><scope>3HK</scope></search><sort><creationdate>2010</creationdate><title>Primitivity of some full group C-algebras</title><author>Bedos, Erik Christopher ; Omland, Tron Ånen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-cristin_nora_10852_102203</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Bedos, Erik Christopher</creatorcontrib><creatorcontrib>Omland, Tron Ånen</creatorcontrib><collection>NORA - Norwegian Open Research Archives</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bedos, Erik Christopher</au><au>Omland, Tron Ånen</au><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><btitle>Primitivity of some full group C-algebras</btitle><date>2010</date><risdate>2010</risdate><abstract>We show that the full group C*-algebra of the free product of two nontrivial countable amenable discrete groups, where at least one of them has more than two elements, is primitive. We also show that in many cases, this C*-algebra is antiliminary and has an uncountable family of pairwise inequivalent, faithful irreducible representations.</abstract><pub>Matematisk Institutt, Universitetet i Oslo</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_cristin_nora_10852_10220 |
source | NORA - Norwegian Open Research Archives |
title | Primitivity of some full group C-algebras |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T05%3A45%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cristin_3HK&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=Primitivity%20of%20some%20full%20group%20C-algebras&rft.au=Bedos,%20Erik%20Christopher&rft.date=2010&rft_id=info:doi/&rft_dat=%3Ccristin_3HK%3E10852_10220%3C/cristin_3HK%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |