Primitivity of some full group C-algebras

We show that the full group C*-algebra of the free product of two nontrivial countable amenable discrete groups, where at least one of them has more than two elements, is primitive. We also show that in many cases, this C*-algebra is antiliminary and has an uncountable family of pairwise inequivalen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bedos, Erik Christopher, Omland, Tron Ånen
Format: Report
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Bedos, Erik Christopher
Omland, Tron Ånen
description We show that the full group C*-algebra of the free product of two nontrivial countable amenable discrete groups, where at least one of them has more than two elements, is primitive. We also show that in many cases, this C*-algebra is antiliminary and has an uncountable family of pairwise inequivalent, faithful irreducible representations.
format Report
fullrecord <record><control><sourceid>cristin_3HK</sourceid><recordid>TN_cdi_cristin_nora_10852_10220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10852_10220</sourcerecordid><originalsourceid>FETCH-cristin_nora_10852_102203</originalsourceid><addsrcrecordid>eNrjZNAMKMrMzSzJLMssqVTIT1Mozs9NVUgrzclRSC_KLy1QcNZNzElPTSpKLOZhYE1LzClO5YXS3Azybq4hzh66yUWZxSWZefF5-UWJ8YYGFqZGQNLIyMCYsAoASwYnNA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>Primitivity of some full group C-algebras</title><source>NORA - Norwegian Open Research Archives</source><creator>Bedos, Erik Christopher ; Omland, Tron Ånen</creator><creatorcontrib>Bedos, Erik Christopher ; Omland, Tron Ånen</creatorcontrib><description>We show that the full group C*-algebra of the free product of two nontrivial countable amenable discrete groups, where at least one of them has more than two elements, is primitive. We also show that in many cases, this C*-algebra is antiliminary and has an uncountable family of pairwise inequivalent, faithful irreducible representations.</description><language>eng</language><publisher>Matematisk Institutt, Universitetet i Oslo</publisher><creationdate>2010</creationdate><rights>info:eu-repo/semantics/openAccess</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,778,883,4478,26554</link.rule.ids><linktorsrc>$$Uhttp://hdl.handle.net/10852/10220$$EView_record_in_NORA$$FView_record_in_$$GNORA$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Bedos, Erik Christopher</creatorcontrib><creatorcontrib>Omland, Tron Ånen</creatorcontrib><title>Primitivity of some full group C-algebras</title><description>We show that the full group C*-algebra of the free product of two nontrivial countable amenable discrete groups, where at least one of them has more than two elements, is primitive. We also show that in many cases, this C*-algebra is antiliminary and has an uncountable family of pairwise inequivalent, faithful irreducible representations.</description><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>2010</creationdate><recordtype>report</recordtype><sourceid>3HK</sourceid><recordid>eNrjZNAMKMrMzSzJLMssqVTIT1Mozs9NVUgrzclRSC_KLy1QcNZNzElPTSpKLOZhYE1LzClO5YXS3Azybq4hzh66yUWZxSWZefF5-UWJ8YYGFqZGQNLIyMCYsAoASwYnNA</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Bedos, Erik Christopher</creator><creator>Omland, Tron Ånen</creator><general>Matematisk Institutt, Universitetet i Oslo</general><scope>3HK</scope></search><sort><creationdate>2010</creationdate><title>Primitivity of some full group C-algebras</title><author>Bedos, Erik Christopher ; Omland, Tron Ånen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-cristin_nora_10852_102203</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Bedos, Erik Christopher</creatorcontrib><creatorcontrib>Omland, Tron Ånen</creatorcontrib><collection>NORA - Norwegian Open Research Archives</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bedos, Erik Christopher</au><au>Omland, Tron Ånen</au><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><btitle>Primitivity of some full group C-algebras</btitle><date>2010</date><risdate>2010</risdate><abstract>We show that the full group C*-algebra of the free product of two nontrivial countable amenable discrete groups, where at least one of them has more than two elements, is primitive. We also show that in many cases, this C*-algebra is antiliminary and has an uncountable family of pairwise inequivalent, faithful irreducible representations.</abstract><pub>Matematisk Institutt, Universitetet i Oslo</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_cristin_nora_10852_10220
source NORA - Norwegian Open Research Archives
title Primitivity of some full group C-algebras
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T05%3A45%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cristin_3HK&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=Primitivity%20of%20some%20full%20group%20C-algebras&rft.au=Bedos,%20Erik%20Christopher&rft.date=2010&rft_id=info:doi/&rft_dat=%3Ccristin_3HK%3E10852_10220%3C/cristin_3HK%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true