Some new multidimensional Cochran-Lee and Hardy type inequalities
A multidimensional Cochran-Lee operator is introduced and investigated in the frame of Hardy-type inequalities with parameters 0
Gespeichert in:
Veröffentlicht in: | Mathematical inequalities & applications 2023, Vol.26 (4), p.887-903 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 903 |
---|---|
container_issue | 4 |
container_start_page | 887 |
container_title | Mathematical inequalities & applications |
container_volume | 26 |
creator | Yimer, Markos Persson, Lars-Erik Ayele, Tsegaye Gedif |
description | A multidimensional Cochran-Lee operator is introduced and investigated in the frame of Hardy-type inequalities with parameters 0 |
doi_str_mv | 10.7153/mia-2023-26-54 |
format | Article |
fullrecord | <record><control><sourceid>swepub_3HK</sourceid><recordid>TN_cdi_cristin_nora_10037_32409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_DiVA_org_kau_97843</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-87aceb1961ac8585955a3dc1e7230a613430ecbe130353d622490872943e0b1d3</originalsourceid><addsrcrecordid>eNo9kMtOwzAURL0AiVLYsiUfgIvta-exrAq0SJVY8NhaN8ktGBKn2Imq_j2pCqxmczSaOYxdSTHLpIHb1iFXQgFXKTf6hE0kgOQaNJyx8xg_hQCpZDph8-eupcTTLmmHpne1a8lH13lskkVXfQT0fE2UoK-TFYZ6n_T7LSXO0_eAjesdxQt2usEm0uVvTtnrw_3LYsXXT8vHxXzNK6VMz_MMKyplkUqscpObwhiEupKUKRCYynGaoKokCQIM1KlSuhB5pgoNJEpZw5TdHHvjjrZDabfBtRj2tkNn79zb3Hbh3X7hYIss1zDi10e8Ci72zlvfBbRyPJ5ZUFoUIzH7I7oYA23-K6WwB4t2tGgPFq1KrdHwA7N-ZZ8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Some new multidimensional Cochran-Lee and Hardy type inequalities</title><source>NORA - Norwegian Open Research Archives</source><creator>Yimer, Markos ; Persson, Lars-Erik ; Ayele, Tsegaye Gedif</creator><creatorcontrib>Yimer, Markos ; Persson, Lars-Erik ; Ayele, Tsegaye Gedif</creatorcontrib><description>A multidimensional Cochran-Lee operator is introduced and investigated in the frame of Hardy-type inequalities with parameters 0<p⩽q<∞. Moreover, for the case p=q and power weights even the sharp constant is derived, thus generalizing the original Cochran-Lee inequality to a multidimensional setting. As applications both several known but also new inequalities are pointed out.</description><identifier>ISSN: 1331-4343</identifier><identifier>ISSN: 1848-9966</identifier><identifier>DOI: 10.7153/mia-2023-26-54</identifier><language>eng</language><publisher>Element Publishing House</publisher><subject>Cochran-Lee's inequality ; Hardy-type inequalities ; Hardy-type operators ; Matematik ; Mathematics ; Multidimensional inequalities ; scales of conditions ; sharp constants ; weights</subject><ispartof>Mathematical inequalities & applications, 2023, Vol.26 (4), p.887-903</ispartof><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,780,885,26565</link.rule.ids><linktorsrc>$$Uhttp://hdl.handle.net/10037/32409$$EView_record_in_NORA$$FView_record_in_$$GNORA$$Hfree_for_read</linktorsrc><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-97843$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Yimer, Markos</creatorcontrib><creatorcontrib>Persson, Lars-Erik</creatorcontrib><creatorcontrib>Ayele, Tsegaye Gedif</creatorcontrib><title>Some new multidimensional Cochran-Lee and Hardy type inequalities</title><title>Mathematical inequalities & applications</title><description>A multidimensional Cochran-Lee operator is introduced and investigated in the frame of Hardy-type inequalities with parameters 0<p⩽q<∞. Moreover, for the case p=q and power weights even the sharp constant is derived, thus generalizing the original Cochran-Lee inequality to a multidimensional setting. As applications both several known but also new inequalities are pointed out.</description><subject>Cochran-Lee's inequality</subject><subject>Hardy-type inequalities</subject><subject>Hardy-type operators</subject><subject>Matematik</subject><subject>Mathematics</subject><subject>Multidimensional inequalities</subject><subject>scales of conditions</subject><subject>sharp constants</subject><subject>weights</subject><issn>1331-4343</issn><issn>1848-9966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNo9kMtOwzAURL0AiVLYsiUfgIvta-exrAq0SJVY8NhaN8ktGBKn2Imq_j2pCqxmczSaOYxdSTHLpIHb1iFXQgFXKTf6hE0kgOQaNJyx8xg_hQCpZDph8-eupcTTLmmHpne1a8lH13lskkVXfQT0fE2UoK-TFYZ6n_T7LSXO0_eAjesdxQt2usEm0uVvTtnrw_3LYsXXT8vHxXzNK6VMz_MMKyplkUqscpObwhiEupKUKRCYynGaoKokCQIM1KlSuhB5pgoNJEpZw5TdHHvjjrZDabfBtRj2tkNn79zb3Hbh3X7hYIss1zDi10e8Ci72zlvfBbRyPJ5ZUFoUIzH7I7oYA23-K6WwB4t2tGgPFq1KrdHwA7N-ZZ8</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Yimer, Markos</creator><creator>Persson, Lars-Erik</creator><creator>Ayele, Tsegaye Gedif</creator><general>Element Publishing House</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3HK</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG3</scope></search><sort><creationdate>2023</creationdate><title>Some new multidimensional Cochran-Lee and Hardy type inequalities</title><author>Yimer, Markos ; Persson, Lars-Erik ; Ayele, Tsegaye Gedif</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-87aceb1961ac8585955a3dc1e7230a613430ecbe130353d622490872943e0b1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cochran-Lee's inequality</topic><topic>Hardy-type inequalities</topic><topic>Hardy-type operators</topic><topic>Matematik</topic><topic>Mathematics</topic><topic>Multidimensional inequalities</topic><topic>scales of conditions</topic><topic>sharp constants</topic><topic>weights</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yimer, Markos</creatorcontrib><creatorcontrib>Persson, Lars-Erik</creatorcontrib><creatorcontrib>Ayele, Tsegaye Gedif</creatorcontrib><collection>CrossRef</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Karlstads universitet</collection><jtitle>Mathematical inequalities & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yimer, Markos</au><au>Persson, Lars-Erik</au><au>Ayele, Tsegaye Gedif</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some new multidimensional Cochran-Lee and Hardy type inequalities</atitle><jtitle>Mathematical inequalities & applications</jtitle><date>2023</date><risdate>2023</risdate><volume>26</volume><issue>4</issue><spage>887</spage><epage>903</epage><pages>887-903</pages><issn>1331-4343</issn><issn>1848-9966</issn><abstract>A multidimensional Cochran-Lee operator is introduced and investigated in the frame of Hardy-type inequalities with parameters 0<p⩽q<∞. Moreover, for the case p=q and power weights even the sharp constant is derived, thus generalizing the original Cochran-Lee inequality to a multidimensional setting. As applications both several known but also new inequalities are pointed out.</abstract><pub>Element Publishing House</pub><doi>10.7153/mia-2023-26-54</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1331-4343 |
ispartof | Mathematical inequalities & applications, 2023, Vol.26 (4), p.887-903 |
issn | 1331-4343 1848-9966 |
language | eng |
recordid | cdi_cristin_nora_10037_32409 |
source | NORA - Norwegian Open Research Archives |
subjects | Cochran-Lee's inequality Hardy-type inequalities Hardy-type operators Matematik Mathematics Multidimensional inequalities scales of conditions sharp constants weights |
title | Some new multidimensional Cochran-Lee and Hardy type inequalities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A23%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-swepub_3HK&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20new%20multidimensional%20Cochran-Lee%20and%20Hardy%20type%20inequalities&rft.jtitle=Mathematical%20inequalities%20&%20applications&rft.au=Yimer,%20Markos&rft.date=2023&rft.volume=26&rft.issue=4&rft.spage=887&rft.epage=903&rft.pages=887-903&rft.issn=1331-4343&rft_id=info:doi/10.7153/mia-2023-26-54&rft_dat=%3Cswepub_3HK%3Eoai_DiVA_org_kau_97843%3C/swepub_3HK%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |