Selecting principal attributes in multimodal remote sensing for sea ice characterization

Automatic ice charting cannot be achieved using only SAR modalities. It is fundamental to combine information from other remote sensors with different characteristics for more reliable sea ice characterization. In this paper, we employ principal feature analysis (PFA) to select significant informati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Khachatrian, Eduard, Chlaily, Saloua, Eltoft, Torbjørn, Marinoni, Andrea
Format: Buch
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Khachatrian, Eduard
Chlaily, Saloua
Eltoft, Torbjørn
Marinoni, Andrea
description Automatic ice charting cannot be achieved using only SAR modalities. It is fundamental to combine information from other remote sensors with different characteristics for more reliable sea ice characterization. In this paper, we employ principal feature analysis (PFA) to select significant information from multimodal remote sensing data. PFA is a simple yet very effective approach that can be applied to several types of data without loss of physical interpretability. Considering that different homogeneous regions require different types of information, we perform the selection patch-wise. Accordingly, by exploiting the spatial information, we increase the robustness and accuracy of PFA.
format Book
fullrecord <record><control><sourceid>cristin_3HK</sourceid><recordid>TN_cdi_cristin_nora_10037_31385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10037_31385</sourcerecordid><originalsourceid>FETCH-cristin_nora_10037_313853</originalsourceid><addsrcrecordid>eNqFjcEKwjAQRAMiKNpvMD8gJCYl8SyKdz14KzFudaFNymZ78eut4N3TDLx5zExUe-eNV8rVtnZ6IapS8K6s9TtltV2K2wU6iIzpKQfCFHEInQzMhPeRoUhMsh87xj4_JkDQZwZZIJWv0WaaepAYQcZXoBAZCN-BMae1mLehK1D9ciU2p-P1cN5GwjL9NSlTaLRSxjVGG1-b_4sPzMNAOQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype></control><display><type>book</type><title>Selecting principal attributes in multimodal remote sensing for sea ice characterization</title><source>NORA - Norwegian Open Research Archives</source><creator>Khachatrian, Eduard ; Chlaily, Saloua ; Eltoft, Torbjørn ; Marinoni, Andrea</creator><creatorcontrib>Khachatrian, Eduard ; Chlaily, Saloua ; Eltoft, Torbjørn ; Marinoni, Andrea</creatorcontrib><description>Automatic ice charting cannot be achieved using only SAR modalities. It is fundamental to combine information from other remote sensors with different characteristics for more reliable sea ice characterization. In this paper, we employ principal feature analysis (PFA) to select significant information from multimodal remote sensing data. PFA is a simple yet very effective approach that can be applied to several types of data without loss of physical interpretability. Considering that different homogeneous regions require different types of information, we perform the selection patch-wise. Accordingly, by exploiting the spatial information, we increase the robustness and accuracy of PFA.</description><identifier>ISBN: 9783800754571</identifier><identifier>ISBN: 3800754576</identifier><language>eng</language><publisher>VDE Verlag</publisher><creationdate>2021</creationdate><rights>info:eu-repo/semantics/openAccess</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,307,777,882,4034,26548</link.rule.ids><linktorsrc>$$Uhttp://hdl.handle.net/10037/31385$$EView_record_in_NORA$$FView_record_in_$$GNORA$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Khachatrian, Eduard</creatorcontrib><creatorcontrib>Chlaily, Saloua</creatorcontrib><creatorcontrib>Eltoft, Torbjørn</creatorcontrib><creatorcontrib>Marinoni, Andrea</creatorcontrib><title>Selecting principal attributes in multimodal remote sensing for sea ice characterization</title><description>Automatic ice charting cannot be achieved using only SAR modalities. It is fundamental to combine information from other remote sensors with different characteristics for more reliable sea ice characterization. In this paper, we employ principal feature analysis (PFA) to select significant information from multimodal remote sensing data. PFA is a simple yet very effective approach that can be applied to several types of data without loss of physical interpretability. Considering that different homogeneous regions require different types of information, we perform the selection patch-wise. Accordingly, by exploiting the spatial information, we increase the robustness and accuracy of PFA.</description><isbn>9783800754571</isbn><isbn>3800754576</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2021</creationdate><recordtype>book</recordtype><sourceid>3HK</sourceid><recordid>eNqFjcEKwjAQRAMiKNpvMD8gJCYl8SyKdz14KzFudaFNymZ78eut4N3TDLx5zExUe-eNV8rVtnZ6IapS8K6s9TtltV2K2wU6iIzpKQfCFHEInQzMhPeRoUhMsh87xj4_JkDQZwZZIJWv0WaaepAYQcZXoBAZCN-BMae1mLehK1D9ciU2p-P1cN5GwjL9NSlTaLRSxjVGG1-b_4sPzMNAOQ</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Khachatrian, Eduard</creator><creator>Chlaily, Saloua</creator><creator>Eltoft, Torbjørn</creator><creator>Marinoni, Andrea</creator><general>VDE Verlag</general><scope>3HK</scope></search><sort><creationdate>2021</creationdate><title>Selecting principal attributes in multimodal remote sensing for sea ice characterization</title><author>Khachatrian, Eduard ; Chlaily, Saloua ; Eltoft, Torbjørn ; Marinoni, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-cristin_nora_10037_313853</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Khachatrian, Eduard</creatorcontrib><creatorcontrib>Chlaily, Saloua</creatorcontrib><creatorcontrib>Eltoft, Torbjørn</creatorcontrib><creatorcontrib>Marinoni, Andrea</creatorcontrib><collection>NORA - Norwegian Open Research Archives</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Khachatrian, Eduard</au><au>Chlaily, Saloua</au><au>Eltoft, Torbjørn</au><au>Marinoni, Andrea</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Selecting principal attributes in multimodal remote sensing for sea ice characterization</btitle><date>2021</date><risdate>2021</risdate><isbn>9783800754571</isbn><isbn>3800754576</isbn><abstract>Automatic ice charting cannot be achieved using only SAR modalities. It is fundamental to combine information from other remote sensors with different characteristics for more reliable sea ice characterization. In this paper, we employ principal feature analysis (PFA) to select significant information from multimodal remote sensing data. PFA is a simple yet very effective approach that can be applied to several types of data without loss of physical interpretability. Considering that different homogeneous regions require different types of information, we perform the selection patch-wise. Accordingly, by exploiting the spatial information, we increase the robustness and accuracy of PFA.</abstract><pub>VDE Verlag</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9783800754571
ispartof
issn
language eng
recordid cdi_cristin_nora_10037_31385
source NORA - Norwegian Open Research Archives
title Selecting principal attributes in multimodal remote sensing for sea ice characterization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A50%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cristin_3HK&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Selecting%20principal%20attributes%20in%20multimodal%20remote%20sensing%20for%20sea%20ice%20characterization&rft.au=Khachatrian,%20Eduard&rft.date=2021&rft.isbn=9783800754571&rft.isbn_list=3800754576&rft_id=info:doi/&rft_dat=%3Ccristin_3HK%3E10037_31385%3C/cristin_3HK%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true