Selecting principal attributes in multimodal remote sensing for sea ice characterization
Automatic ice charting cannot be achieved using only SAR modalities. It is fundamental to combine information from other remote sensors with different characteristics for more reliable sea ice characterization. In this paper, we employ principal feature analysis (PFA) to select significant informati...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Buch |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Khachatrian, Eduard Chlaily, Saloua Eltoft, Torbjørn Marinoni, Andrea |
description | Automatic ice charting cannot be achieved using only SAR modalities. It is fundamental to combine information from other remote sensors with different characteristics for more reliable sea ice characterization. In this paper, we employ principal feature analysis (PFA) to select significant information from multimodal remote sensing data. PFA is a simple yet very effective approach that can be applied to several types of data without loss of physical interpretability. Considering that different homogeneous regions require different types of information, we perform the selection patch-wise. Accordingly, by exploiting the spatial information, we increase the robustness and accuracy of PFA. |
format | Book |
fullrecord | <record><control><sourceid>cristin_3HK</sourceid><recordid>TN_cdi_cristin_nora_10037_31385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10037_31385</sourcerecordid><originalsourceid>FETCH-cristin_nora_10037_313853</originalsourceid><addsrcrecordid>eNqFjcEKwjAQRAMiKNpvMD8gJCYl8SyKdz14KzFudaFNymZ78eut4N3TDLx5zExUe-eNV8rVtnZ6IapS8K6s9TtltV2K2wU6iIzpKQfCFHEInQzMhPeRoUhMsh87xj4_JkDQZwZZIJWv0WaaepAYQcZXoBAZCN-BMae1mLehK1D9ciU2p-P1cN5GwjL9NSlTaLRSxjVGG1-b_4sPzMNAOQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype></control><display><type>book</type><title>Selecting principal attributes in multimodal remote sensing for sea ice characterization</title><source>NORA - Norwegian Open Research Archives</source><creator>Khachatrian, Eduard ; Chlaily, Saloua ; Eltoft, Torbjørn ; Marinoni, Andrea</creator><creatorcontrib>Khachatrian, Eduard ; Chlaily, Saloua ; Eltoft, Torbjørn ; Marinoni, Andrea</creatorcontrib><description>Automatic ice charting cannot be achieved using only SAR modalities. It is fundamental to combine information from other remote sensors with different characteristics for more reliable sea ice characterization. In this paper, we employ principal feature analysis (PFA) to select significant information from multimodal remote sensing data. PFA is a simple yet very effective approach that can be applied to several types of data without loss of physical interpretability. Considering that different homogeneous regions require different types of information, we perform the selection patch-wise. Accordingly, by exploiting the spatial information, we increase the robustness and accuracy of PFA.</description><identifier>ISBN: 9783800754571</identifier><identifier>ISBN: 3800754576</identifier><language>eng</language><publisher>VDE Verlag</publisher><creationdate>2021</creationdate><rights>info:eu-repo/semantics/openAccess</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,307,777,882,4034,26548</link.rule.ids><linktorsrc>$$Uhttp://hdl.handle.net/10037/31385$$EView_record_in_NORA$$FView_record_in_$$GNORA$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Khachatrian, Eduard</creatorcontrib><creatorcontrib>Chlaily, Saloua</creatorcontrib><creatorcontrib>Eltoft, Torbjørn</creatorcontrib><creatorcontrib>Marinoni, Andrea</creatorcontrib><title>Selecting principal attributes in multimodal remote sensing for sea ice characterization</title><description>Automatic ice charting cannot be achieved using only SAR modalities. It is fundamental to combine information from other remote sensors with different characteristics for more reliable sea ice characterization. In this paper, we employ principal feature analysis (PFA) to select significant information from multimodal remote sensing data. PFA is a simple yet very effective approach that can be applied to several types of data without loss of physical interpretability. Considering that different homogeneous regions require different types of information, we perform the selection patch-wise. Accordingly, by exploiting the spatial information, we increase the robustness and accuracy of PFA.</description><isbn>9783800754571</isbn><isbn>3800754576</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2021</creationdate><recordtype>book</recordtype><sourceid>3HK</sourceid><recordid>eNqFjcEKwjAQRAMiKNpvMD8gJCYl8SyKdz14KzFudaFNymZ78eut4N3TDLx5zExUe-eNV8rVtnZ6IapS8K6s9TtltV2K2wU6iIzpKQfCFHEInQzMhPeRoUhMsh87xj4_JkDQZwZZIJWv0WaaepAYQcZXoBAZCN-BMae1mLehK1D9ciU2p-P1cN5GwjL9NSlTaLRSxjVGG1-b_4sPzMNAOQ</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Khachatrian, Eduard</creator><creator>Chlaily, Saloua</creator><creator>Eltoft, Torbjørn</creator><creator>Marinoni, Andrea</creator><general>VDE Verlag</general><scope>3HK</scope></search><sort><creationdate>2021</creationdate><title>Selecting principal attributes in multimodal remote sensing for sea ice characterization</title><author>Khachatrian, Eduard ; Chlaily, Saloua ; Eltoft, Torbjørn ; Marinoni, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-cristin_nora_10037_313853</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Khachatrian, Eduard</creatorcontrib><creatorcontrib>Chlaily, Saloua</creatorcontrib><creatorcontrib>Eltoft, Torbjørn</creatorcontrib><creatorcontrib>Marinoni, Andrea</creatorcontrib><collection>NORA - Norwegian Open Research Archives</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Khachatrian, Eduard</au><au>Chlaily, Saloua</au><au>Eltoft, Torbjørn</au><au>Marinoni, Andrea</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Selecting principal attributes in multimodal remote sensing for sea ice characterization</btitle><date>2021</date><risdate>2021</risdate><isbn>9783800754571</isbn><isbn>3800754576</isbn><abstract>Automatic ice charting cannot be achieved using only SAR modalities. It is fundamental to combine information from other remote sensors with different characteristics for more reliable sea ice characterization. In this paper, we employ principal feature analysis (PFA) to select significant information from multimodal remote sensing data. PFA is a simple yet very effective approach that can be applied to several types of data without loss of physical interpretability. Considering that different homogeneous regions require different types of information, we perform the selection patch-wise. Accordingly, by exploiting the spatial information, we increase the robustness and accuracy of PFA.</abstract><pub>VDE Verlag</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9783800754571 |
ispartof | |
issn | |
language | eng |
recordid | cdi_cristin_nora_10037_31385 |
source | NORA - Norwegian Open Research Archives |
title | Selecting principal attributes in multimodal remote sensing for sea ice characterization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A50%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cristin_3HK&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Selecting%20principal%20attributes%20in%20multimodal%20remote%20sensing%20for%20sea%20ice%20characterization&rft.au=Khachatrian,%20Eduard&rft.date=2021&rft.isbn=9783800754571&rft.isbn_list=3800754576&rft_id=info:doi/&rft_dat=%3Ccristin_3HK%3E10037_31385%3C/cristin_3HK%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |