Hyperbolic cone metrics and billiards

A negatively curved hyperbolic cone metric is called rigid if it is determined (up to isotopy) by the support of its Liouville current, and flexible otherwise. We provide a complete characterization of rigidity and flexibility, prove that rigidity is a generic property, and parameterize the associat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in mathematics (New York. 1965) 2022-11, Vol.409, p.108662, Article 108662
Hauptverfasser: Erlandsson, Viveka, Leininger, Christopher J., Sadanand, Chandrika
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 108662
container_title Advances in mathematics (New York. 1965)
container_volume 409
creator Erlandsson, Viveka
Leininger, Christopher J.
Sadanand, Chandrika
description A negatively curved hyperbolic cone metric is called rigid if it is determined (up to isotopy) by the support of its Liouville current, and flexible otherwise. We provide a complete characterization of rigidity and flexibility, prove that rigidity is a generic property, and parameterize the associated deformation space for any flexible metric. As an application, we parameterize the space of hyperbolic polygons with the same symbolic coding for their billiard dynamics, and prove that generically this parameter space is a point.
doi_str_mv 10.1016/j.aim.2022.108662
format Article
fullrecord <record><control><sourceid>elsevier_crist</sourceid><recordid>TN_cdi_cristin_nora_10037_28189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0001870822004790</els_id><sourcerecordid>S0001870822004790</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-1dbe8df61977eeae3086ffa6b31b3445f8c23f8837ec15214394471adffd45643</originalsourceid><addsrcrecordid>eNp9kMFKAzEURYMoWKsf4MrZuJwxL8kkGVxJsVYouNF1yCQvkDKdKckg9O9NqW5dPS7c87gcQu6BNkBBPu0aG_cNo4yVrKVkF2QBtKM1o5pdkgWlFGqtqL4mNznvSuwEdAvyuDkeMPXTEF3lphGrPc4pulzZ0Vd9HIZok8-35CrYIePd712Sr_Xr52pTbz_e3lcv29pxkHMNvkftg4ROKUSLvCwJwcqeQ8-FaIN2jAetuUIHLQPBOyEUWB-CF60UfEkezn9dinmOoxmnZA1QypVhGnRXGvDXmHJOGMwhxb1Nx9IyJxNmZ4oJczJhziYK83xmsEz_jphMdhFHhz4mdLPxU_yH_gFXUGOJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hyperbolic cone metrics and billiards</title><source>NORA - Norwegian Open Research Archives</source><source>Elsevier ScienceDirect Journals</source><creator>Erlandsson, Viveka ; Leininger, Christopher J. ; Sadanand, Chandrika</creator><creatorcontrib>Erlandsson, Viveka ; Leininger, Christopher J. ; Sadanand, Chandrika</creatorcontrib><description>A negatively curved hyperbolic cone metric is called rigid if it is determined (up to isotopy) by the support of its Liouville current, and flexible otherwise. We provide a complete characterization of rigidity and flexibility, prove that rigidity is a generic property, and parameterize the associated deformation space for any flexible metric. As an application, we parameterize the space of hyperbolic polygons with the same symbolic coding for their billiard dynamics, and prove that generically this parameter space is a point.</description><identifier>ISSN: 0001-8708</identifier><identifier>ISSN: 1090-2082</identifier><identifier>EISSN: 1090-2082</identifier><identifier>DOI: 10.1016/j.aim.2022.108662</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Billiard ; Cone metric ; Geodesic current ; Hyperbolic ; Rigidity ; Surface</subject><ispartof>Advances in mathematics (New York. 1965), 2022-11, Vol.409, p.108662, Article 108662</ispartof><rights>2022 The Authors</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c316t-1dbe8df61977eeae3086ffa6b31b3445f8c23f8837ec15214394471adffd45643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.aim.2022.108662$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,3537,26548,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Erlandsson, Viveka</creatorcontrib><creatorcontrib>Leininger, Christopher J.</creatorcontrib><creatorcontrib>Sadanand, Chandrika</creatorcontrib><title>Hyperbolic cone metrics and billiards</title><title>Advances in mathematics (New York. 1965)</title><description>A negatively curved hyperbolic cone metric is called rigid if it is determined (up to isotopy) by the support of its Liouville current, and flexible otherwise. We provide a complete characterization of rigidity and flexibility, prove that rigidity is a generic property, and parameterize the associated deformation space for any flexible metric. As an application, we parameterize the space of hyperbolic polygons with the same symbolic coding for their billiard dynamics, and prove that generically this parameter space is a point.</description><subject>Billiard</subject><subject>Cone metric</subject><subject>Geodesic current</subject><subject>Hyperbolic</subject><subject>Rigidity</subject><subject>Surface</subject><issn>0001-8708</issn><issn>1090-2082</issn><issn>1090-2082</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNp9kMFKAzEURYMoWKsf4MrZuJwxL8kkGVxJsVYouNF1yCQvkDKdKckg9O9NqW5dPS7c87gcQu6BNkBBPu0aG_cNo4yVrKVkF2QBtKM1o5pdkgWlFGqtqL4mNznvSuwEdAvyuDkeMPXTEF3lphGrPc4pulzZ0Vd9HIZok8-35CrYIePd712Sr_Xr52pTbz_e3lcv29pxkHMNvkftg4ROKUSLvCwJwcqeQ8-FaIN2jAetuUIHLQPBOyEUWB-CF60UfEkezn9dinmOoxmnZA1QypVhGnRXGvDXmHJOGMwhxb1Nx9IyJxNmZ4oJczJhziYK83xmsEz_jphMdhFHhz4mdLPxU_yH_gFXUGOJ</recordid><startdate>20221119</startdate><enddate>20221119</enddate><creator>Erlandsson, Viveka</creator><creator>Leininger, Christopher J.</creator><creator>Sadanand, Chandrika</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3HK</scope></search><sort><creationdate>20221119</creationdate><title>Hyperbolic cone metrics and billiards</title><author>Erlandsson, Viveka ; Leininger, Christopher J. ; Sadanand, Chandrika</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-1dbe8df61977eeae3086ffa6b31b3445f8c23f8837ec15214394471adffd45643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Billiard</topic><topic>Cone metric</topic><topic>Geodesic current</topic><topic>Hyperbolic</topic><topic>Rigidity</topic><topic>Surface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Erlandsson, Viveka</creatorcontrib><creatorcontrib>Leininger, Christopher J.</creatorcontrib><creatorcontrib>Sadanand, Chandrika</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>NORA - Norwegian Open Research Archives</collection><jtitle>Advances in mathematics (New York. 1965)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Erlandsson, Viveka</au><au>Leininger, Christopher J.</au><au>Sadanand, Chandrika</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperbolic cone metrics and billiards</atitle><jtitle>Advances in mathematics (New York. 1965)</jtitle><date>2022-11-19</date><risdate>2022</risdate><volume>409</volume><spage>108662</spage><pages>108662-</pages><artnum>108662</artnum><issn>0001-8708</issn><issn>1090-2082</issn><eissn>1090-2082</eissn><abstract>A negatively curved hyperbolic cone metric is called rigid if it is determined (up to isotopy) by the support of its Liouville current, and flexible otherwise. We provide a complete characterization of rigidity and flexibility, prove that rigidity is a generic property, and parameterize the associated deformation space for any flexible metric. As an application, we parameterize the space of hyperbolic polygons with the same symbolic coding for their billiard dynamics, and prove that generically this parameter space is a point.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.aim.2022.108662</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-8708
ispartof Advances in mathematics (New York. 1965), 2022-11, Vol.409, p.108662, Article 108662
issn 0001-8708
1090-2082
1090-2082
language eng
recordid cdi_cristin_nora_10037_28189
source NORA - Norwegian Open Research Archives; Elsevier ScienceDirect Journals
subjects Billiard
Cone metric
Geodesic current
Hyperbolic
Rigidity
Surface
title Hyperbolic cone metrics and billiards
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T22%3A30%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_crist&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperbolic%20cone%20metrics%20and%20billiards&rft.jtitle=Advances%20in%20mathematics%20(New%20York.%201965)&rft.au=Erlandsson,%20Viveka&rft.date=2022-11-19&rft.volume=409&rft.spage=108662&rft.pages=108662-&rft.artnum=108662&rft.issn=0001-8708&rft.eissn=1090-2082&rft_id=info:doi/10.1016/j.aim.2022.108662&rft_dat=%3Celsevier_crist%3ES0001870822004790%3C/elsevier_crist%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0001870822004790&rfr_iscdi=true