Hyperbolic cone metrics and billiards
A negatively curved hyperbolic cone metric is called rigid if it is determined (up to isotopy) by the support of its Liouville current, and flexible otherwise. We provide a complete characterization of rigidity and flexibility, prove that rigidity is a generic property, and parameterize the associat...
Gespeichert in:
Veröffentlicht in: | Advances in mathematics (New York. 1965) 2022-11, Vol.409, p.108662, Article 108662 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 108662 |
container_title | Advances in mathematics (New York. 1965) |
container_volume | 409 |
creator | Erlandsson, Viveka Leininger, Christopher J. Sadanand, Chandrika |
description | A negatively curved hyperbolic cone metric is called rigid if it is determined (up to isotopy) by the support of its Liouville current, and flexible otherwise. We provide a complete characterization of rigidity and flexibility, prove that rigidity is a generic property, and parameterize the associated deformation space for any flexible metric. As an application, we parameterize the space of hyperbolic polygons with the same symbolic coding for their billiard dynamics, and prove that generically this parameter space is a point. |
doi_str_mv | 10.1016/j.aim.2022.108662 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_crist</sourceid><recordid>TN_cdi_cristin_nora_10037_28189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0001870822004790</els_id><sourcerecordid>S0001870822004790</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-1dbe8df61977eeae3086ffa6b31b3445f8c23f8837ec15214394471adffd45643</originalsourceid><addsrcrecordid>eNp9kMFKAzEURYMoWKsf4MrZuJwxL8kkGVxJsVYouNF1yCQvkDKdKckg9O9NqW5dPS7c87gcQu6BNkBBPu0aG_cNo4yVrKVkF2QBtKM1o5pdkgWlFGqtqL4mNznvSuwEdAvyuDkeMPXTEF3lphGrPc4pulzZ0Vd9HIZok8-35CrYIePd712Sr_Xr52pTbz_e3lcv29pxkHMNvkftg4ROKUSLvCwJwcqeQ8-FaIN2jAetuUIHLQPBOyEUWB-CF60UfEkezn9dinmOoxmnZA1QypVhGnRXGvDXmHJOGMwhxb1Nx9IyJxNmZ4oJczJhziYK83xmsEz_jphMdhFHhz4mdLPxU_yH_gFXUGOJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hyperbolic cone metrics and billiards</title><source>NORA - Norwegian Open Research Archives</source><source>Elsevier ScienceDirect Journals</source><creator>Erlandsson, Viveka ; Leininger, Christopher J. ; Sadanand, Chandrika</creator><creatorcontrib>Erlandsson, Viveka ; Leininger, Christopher J. ; Sadanand, Chandrika</creatorcontrib><description>A negatively curved hyperbolic cone metric is called rigid if it is determined (up to isotopy) by the support of its Liouville current, and flexible otherwise. We provide a complete characterization of rigidity and flexibility, prove that rigidity is a generic property, and parameterize the associated deformation space for any flexible metric. As an application, we parameterize the space of hyperbolic polygons with the same symbolic coding for their billiard dynamics, and prove that generically this parameter space is a point.</description><identifier>ISSN: 0001-8708</identifier><identifier>ISSN: 1090-2082</identifier><identifier>EISSN: 1090-2082</identifier><identifier>DOI: 10.1016/j.aim.2022.108662</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Billiard ; Cone metric ; Geodesic current ; Hyperbolic ; Rigidity ; Surface</subject><ispartof>Advances in mathematics (New York. 1965), 2022-11, Vol.409, p.108662, Article 108662</ispartof><rights>2022 The Authors</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c316t-1dbe8df61977eeae3086ffa6b31b3445f8c23f8837ec15214394471adffd45643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.aim.2022.108662$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,3537,26548,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Erlandsson, Viveka</creatorcontrib><creatorcontrib>Leininger, Christopher J.</creatorcontrib><creatorcontrib>Sadanand, Chandrika</creatorcontrib><title>Hyperbolic cone metrics and billiards</title><title>Advances in mathematics (New York. 1965)</title><description>A negatively curved hyperbolic cone metric is called rigid if it is determined (up to isotopy) by the support of its Liouville current, and flexible otherwise. We provide a complete characterization of rigidity and flexibility, prove that rigidity is a generic property, and parameterize the associated deformation space for any flexible metric. As an application, we parameterize the space of hyperbolic polygons with the same symbolic coding for their billiard dynamics, and prove that generically this parameter space is a point.</description><subject>Billiard</subject><subject>Cone metric</subject><subject>Geodesic current</subject><subject>Hyperbolic</subject><subject>Rigidity</subject><subject>Surface</subject><issn>0001-8708</issn><issn>1090-2082</issn><issn>1090-2082</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNp9kMFKAzEURYMoWKsf4MrZuJwxL8kkGVxJsVYouNF1yCQvkDKdKckg9O9NqW5dPS7c87gcQu6BNkBBPu0aG_cNo4yVrKVkF2QBtKM1o5pdkgWlFGqtqL4mNznvSuwEdAvyuDkeMPXTEF3lphGrPc4pulzZ0Vd9HIZok8-35CrYIePd712Sr_Xr52pTbz_e3lcv29pxkHMNvkftg4ROKUSLvCwJwcqeQ8-FaIN2jAetuUIHLQPBOyEUWB-CF60UfEkezn9dinmOoxmnZA1QypVhGnRXGvDXmHJOGMwhxb1Nx9IyJxNmZ4oJczJhziYK83xmsEz_jphMdhFHhz4mdLPxU_yH_gFXUGOJ</recordid><startdate>20221119</startdate><enddate>20221119</enddate><creator>Erlandsson, Viveka</creator><creator>Leininger, Christopher J.</creator><creator>Sadanand, Chandrika</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3HK</scope></search><sort><creationdate>20221119</creationdate><title>Hyperbolic cone metrics and billiards</title><author>Erlandsson, Viveka ; Leininger, Christopher J. ; Sadanand, Chandrika</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-1dbe8df61977eeae3086ffa6b31b3445f8c23f8837ec15214394471adffd45643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Billiard</topic><topic>Cone metric</topic><topic>Geodesic current</topic><topic>Hyperbolic</topic><topic>Rigidity</topic><topic>Surface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Erlandsson, Viveka</creatorcontrib><creatorcontrib>Leininger, Christopher J.</creatorcontrib><creatorcontrib>Sadanand, Chandrika</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>NORA - Norwegian Open Research Archives</collection><jtitle>Advances in mathematics (New York. 1965)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Erlandsson, Viveka</au><au>Leininger, Christopher J.</au><au>Sadanand, Chandrika</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperbolic cone metrics and billiards</atitle><jtitle>Advances in mathematics (New York. 1965)</jtitle><date>2022-11-19</date><risdate>2022</risdate><volume>409</volume><spage>108662</spage><pages>108662-</pages><artnum>108662</artnum><issn>0001-8708</issn><issn>1090-2082</issn><eissn>1090-2082</eissn><abstract>A negatively curved hyperbolic cone metric is called rigid if it is determined (up to isotopy) by the support of its Liouville current, and flexible otherwise. We provide a complete characterization of rigidity and flexibility, prove that rigidity is a generic property, and parameterize the associated deformation space for any flexible metric. As an application, we parameterize the space of hyperbolic polygons with the same symbolic coding for their billiard dynamics, and prove that generically this parameter space is a point.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.aim.2022.108662</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-8708 |
ispartof | Advances in mathematics (New York. 1965), 2022-11, Vol.409, p.108662, Article 108662 |
issn | 0001-8708 1090-2082 1090-2082 |
language | eng |
recordid | cdi_cristin_nora_10037_28189 |
source | NORA - Norwegian Open Research Archives; Elsevier ScienceDirect Journals |
subjects | Billiard Cone metric Geodesic current Hyperbolic Rigidity Surface |
title | Hyperbolic cone metrics and billiards |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T22%3A30%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_crist&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperbolic%20cone%20metrics%20and%20billiards&rft.jtitle=Advances%20in%20mathematics%20(New%20York.%201965)&rft.au=Erlandsson,%20Viveka&rft.date=2022-11-19&rft.volume=409&rft.spage=108662&rft.pages=108662-&rft.artnum=108662&rft.issn=0001-8708&rft.eissn=1090-2082&rft_id=info:doi/10.1016/j.aim.2022.108662&rft_dat=%3Celsevier_crist%3ES0001870822004790%3C/elsevier_crist%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0001870822004790&rfr_iscdi=true |