Intersecting near-optimal spaces: European power systems with more resilience to weather variability
We suggest a new methodology for designing robust energy systems. For this, we investigate so-called near-optimal solutions to energy system optimisation models; solutions whose objective values deviate only marginally from the optimum. Using a refined method for obtaining explicit geometric descrip...
Gespeichert in:
Veröffentlicht in: | Energy economics 2023-02, Vol.118, p.106496, Article 106496 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 106496 |
container_title | Energy economics |
container_volume | 118 |
creator | Grochowicz, Aleksander van Greevenbroek, Koen Benth, Fred Espen Zeyringer, Marianne |
description | We suggest a new methodology for designing robust energy systems. For this, we investigate so-called near-optimal solutions to energy system optimisation models; solutions whose objective values deviate only marginally from the optimum. Using a refined method for obtaining explicit geometric descriptions of these near-optimal feasible spaces, we find designs that are as robust as possible to perturbations. This contributes to the ongoing debate on how to define and work with robustness in energy systems modelling.
We apply our methods in an investigation using multiple decades of weather data. For the first time, we run a capacity expansion model of the European power system (one node per country) with a three-hourly temporal resolution and 41 years of weather data. While an optimisation with 41 weather years is at the limits of computational feasibility, we use the near-optimal feasible spaces of single years to gain an understanding of the design space over the full time period. Specifically, we intersect all near-optimal feasible spaces for the individual years in order to get designs that are likely to be feasible over the entire time period. We find significant potential for investment flexibility, and verify the feasibility of these designs by simulating the resulting dispatch problem with four decades of weather data. They are characterised by a shift towards more onshore wind and solar power, while emitting more than 50% less CO2 than a cost-optimal solution over that period.
Our work builds on recent developments in the field, including techniques such as Modelling to Generate Alternatives (MGA) and Modelling All Alternatives (MAA), and provides new insights into the geometry of near-optimal feasible spaces and the importance of multi-decade weather variability for energy systems design. We also provide an effective way of working with a multi-decade time frame in a highly parallelised manner. Our implementation is open-sourced, adaptable and is based on PyPSA-Eur.
[Display omitted]
•Open energy system optimisation model for Europe run with decades of weather data.•Different weather years impact optimal solutions, but near-optimal spaces intersect.•Geometry of near-optimal spaces allows for robustness against perturbations.•More investment lowers variable costs & leads to more robustness and fewer emissions.•Approximating near-optimal spaces is parallelizable, making large problems tractable. |
doi_str_mv | 10.1016/j.eneco.2022.106496 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_crist</sourceid><recordid>TN_cdi_cristin_nora_10037_28061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0140988322006259</els_id><sourcerecordid>S0140988322006259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-d581cfe50cab01068c280562991a755f2c17f37e6f6c675a376ea58d3c5508e83</originalsourceid><addsrcrecordid>eNp9kM1OAjEUhRujiYg-gQv7AoPtlP6MiQtDQElI3Oi6KZ07UgLtpK0Q3t4CunV1k3vPObnnQ-iekhElVDyuR-DBhlFN6rpsxLgRF2hAlWSVoIpeogGhY1I1SrFrdJPSmhDCBVcD1M59hpjAZue_sAcTq9BntzUbnHpjIT3h6XcMPRiP-7CHiNMhZdgmvHd5hbchAo6Q3MaBt4BzwHsweVV0OxOdWZZDPtyiq85sEtz9ziH6nE0_Jm_V4v11PnlZVHZMeK5arqjtgBNrlqS0ULZW5c26aaiRnHe1pbJjEkQnrJDcMCnAcNUyyzlRoNgQPZxzbXSpFNI-RKMpIUzqEiVoUbA_RUgpQqf7WMrGQ1HpI0q91ieU-ohSn1EW1_PZBeX5nYOokz31bV0s5HQb3L_-HywSfg0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Intersecting near-optimal spaces: European power systems with more resilience to weather variability</title><source>NORA - Norwegian Open Research Archives</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Grochowicz, Aleksander ; van Greevenbroek, Koen ; Benth, Fred Espen ; Zeyringer, Marianne</creator><creatorcontrib>Grochowicz, Aleksander ; van Greevenbroek, Koen ; Benth, Fred Espen ; Zeyringer, Marianne</creatorcontrib><description>We suggest a new methodology for designing robust energy systems. For this, we investigate so-called near-optimal solutions to energy system optimisation models; solutions whose objective values deviate only marginally from the optimum. Using a refined method for obtaining explicit geometric descriptions of these near-optimal feasible spaces, we find designs that are as robust as possible to perturbations. This contributes to the ongoing debate on how to define and work with robustness in energy systems modelling.
We apply our methods in an investigation using multiple decades of weather data. For the first time, we run a capacity expansion model of the European power system (one node per country) with a three-hourly temporal resolution and 41 years of weather data. While an optimisation with 41 weather years is at the limits of computational feasibility, we use the near-optimal feasible spaces of single years to gain an understanding of the design space over the full time period. Specifically, we intersect all near-optimal feasible spaces for the individual years in order to get designs that are likely to be feasible over the entire time period. We find significant potential for investment flexibility, and verify the feasibility of these designs by simulating the resulting dispatch problem with four decades of weather data. They are characterised by a shift towards more onshore wind and solar power, while emitting more than 50% less CO2 than a cost-optimal solution over that period.
Our work builds on recent developments in the field, including techniques such as Modelling to Generate Alternatives (MGA) and Modelling All Alternatives (MAA), and provides new insights into the geometry of near-optimal feasible spaces and the importance of multi-decade weather variability for energy systems design. We also provide an effective way of working with a multi-decade time frame in a highly parallelised manner. Our implementation is open-sourced, adaptable and is based on PyPSA-Eur.
[Display omitted]
•Open energy system optimisation model for Europe run with decades of weather data.•Different weather years impact optimal solutions, but near-optimal spaces intersect.•Geometry of near-optimal spaces allows for robustness against perturbations.•More investment lowers variable costs & leads to more robustness and fewer emissions.•Approximating near-optimal spaces is parallelizable, making large problems tractable.</description><identifier>ISSN: 0140-9883</identifier><identifier>ISSN: 1873-6181</identifier><identifier>EISSN: 1873-6181</identifier><identifier>DOI: 10.1016/j.eneco.2022.106496</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Climate-resilient energy systems ; Energy system optimisation model ; Modelling to generate alternatives ; Near-optimal solutions ; Robust energy systems ; Weather uncertainty</subject><ispartof>Energy economics, 2023-02, Vol.118, p.106496, Article 106496</ispartof><rights>2022 The Author(s)</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-d581cfe50cab01068c280562991a755f2c17f37e6f6c675a376ea58d3c5508e83</citedby><cites>FETCH-LOGICAL-c405t-d581cfe50cab01068c280562991a755f2c17f37e6f6c675a376ea58d3c5508e83</cites><orcidid>0000-0002-1029-2858</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.eneco.2022.106496$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,26567,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Grochowicz, Aleksander</creatorcontrib><creatorcontrib>van Greevenbroek, Koen</creatorcontrib><creatorcontrib>Benth, Fred Espen</creatorcontrib><creatorcontrib>Zeyringer, Marianne</creatorcontrib><title>Intersecting near-optimal spaces: European power systems with more resilience to weather variability</title><title>Energy economics</title><description>We suggest a new methodology for designing robust energy systems. For this, we investigate so-called near-optimal solutions to energy system optimisation models; solutions whose objective values deviate only marginally from the optimum. Using a refined method for obtaining explicit geometric descriptions of these near-optimal feasible spaces, we find designs that are as robust as possible to perturbations. This contributes to the ongoing debate on how to define and work with robustness in energy systems modelling.
We apply our methods in an investigation using multiple decades of weather data. For the first time, we run a capacity expansion model of the European power system (one node per country) with a three-hourly temporal resolution and 41 years of weather data. While an optimisation with 41 weather years is at the limits of computational feasibility, we use the near-optimal feasible spaces of single years to gain an understanding of the design space over the full time period. Specifically, we intersect all near-optimal feasible spaces for the individual years in order to get designs that are likely to be feasible over the entire time period. We find significant potential for investment flexibility, and verify the feasibility of these designs by simulating the resulting dispatch problem with four decades of weather data. They are characterised by a shift towards more onshore wind and solar power, while emitting more than 50% less CO2 than a cost-optimal solution over that period.
Our work builds on recent developments in the field, including techniques such as Modelling to Generate Alternatives (MGA) and Modelling All Alternatives (MAA), and provides new insights into the geometry of near-optimal feasible spaces and the importance of multi-decade weather variability for energy systems design. We also provide an effective way of working with a multi-decade time frame in a highly parallelised manner. Our implementation is open-sourced, adaptable and is based on PyPSA-Eur.
[Display omitted]
•Open energy system optimisation model for Europe run with decades of weather data.•Different weather years impact optimal solutions, but near-optimal spaces intersect.•Geometry of near-optimal spaces allows for robustness against perturbations.•More investment lowers variable costs & leads to more robustness and fewer emissions.•Approximating near-optimal spaces is parallelizable, making large problems tractable.</description><subject>Climate-resilient energy systems</subject><subject>Energy system optimisation model</subject><subject>Modelling to generate alternatives</subject><subject>Near-optimal solutions</subject><subject>Robust energy systems</subject><subject>Weather uncertainty</subject><issn>0140-9883</issn><issn>1873-6181</issn><issn>1873-6181</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNp9kM1OAjEUhRujiYg-gQv7AoPtlP6MiQtDQElI3Oi6KZ07UgLtpK0Q3t4CunV1k3vPObnnQ-iekhElVDyuR-DBhlFN6rpsxLgRF2hAlWSVoIpeogGhY1I1SrFrdJPSmhDCBVcD1M59hpjAZue_sAcTq9BntzUbnHpjIT3h6XcMPRiP-7CHiNMhZdgmvHd5hbchAo6Q3MaBt4BzwHsweVV0OxOdWZZDPtyiq85sEtz9ziH6nE0_Jm_V4v11PnlZVHZMeK5arqjtgBNrlqS0ULZW5c26aaiRnHe1pbJjEkQnrJDcMCnAcNUyyzlRoNgQPZxzbXSpFNI-RKMpIUzqEiVoUbA_RUgpQqf7WMrGQ1HpI0q91ieU-ohSn1EW1_PZBeX5nYOokz31bV0s5HQb3L_-HywSfg0</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Grochowicz, Aleksander</creator><creator>van Greevenbroek, Koen</creator><creator>Benth, Fred Espen</creator><creator>Zeyringer, Marianne</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3HK</scope><orcidid>https://orcid.org/0000-0002-1029-2858</orcidid></search><sort><creationdate>20230201</creationdate><title>Intersecting near-optimal spaces: European power systems with more resilience to weather variability</title><author>Grochowicz, Aleksander ; van Greevenbroek, Koen ; Benth, Fred Espen ; Zeyringer, Marianne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-d581cfe50cab01068c280562991a755f2c17f37e6f6c675a376ea58d3c5508e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Climate-resilient energy systems</topic><topic>Energy system optimisation model</topic><topic>Modelling to generate alternatives</topic><topic>Near-optimal solutions</topic><topic>Robust energy systems</topic><topic>Weather uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grochowicz, Aleksander</creatorcontrib><creatorcontrib>van Greevenbroek, Koen</creatorcontrib><creatorcontrib>Benth, Fred Espen</creatorcontrib><creatorcontrib>Zeyringer, Marianne</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>NORA - Norwegian Open Research Archives</collection><jtitle>Energy economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grochowicz, Aleksander</au><au>van Greevenbroek, Koen</au><au>Benth, Fred Espen</au><au>Zeyringer, Marianne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intersecting near-optimal spaces: European power systems with more resilience to weather variability</atitle><jtitle>Energy economics</jtitle><date>2023-02-01</date><risdate>2023</risdate><volume>118</volume><spage>106496</spage><pages>106496-</pages><artnum>106496</artnum><issn>0140-9883</issn><issn>1873-6181</issn><eissn>1873-6181</eissn><abstract>We suggest a new methodology for designing robust energy systems. For this, we investigate so-called near-optimal solutions to energy system optimisation models; solutions whose objective values deviate only marginally from the optimum. Using a refined method for obtaining explicit geometric descriptions of these near-optimal feasible spaces, we find designs that are as robust as possible to perturbations. This contributes to the ongoing debate on how to define and work with robustness in energy systems modelling.
We apply our methods in an investigation using multiple decades of weather data. For the first time, we run a capacity expansion model of the European power system (one node per country) with a three-hourly temporal resolution and 41 years of weather data. While an optimisation with 41 weather years is at the limits of computational feasibility, we use the near-optimal feasible spaces of single years to gain an understanding of the design space over the full time period. Specifically, we intersect all near-optimal feasible spaces for the individual years in order to get designs that are likely to be feasible over the entire time period. We find significant potential for investment flexibility, and verify the feasibility of these designs by simulating the resulting dispatch problem with four decades of weather data. They are characterised by a shift towards more onshore wind and solar power, while emitting more than 50% less CO2 than a cost-optimal solution over that period.
Our work builds on recent developments in the field, including techniques such as Modelling to Generate Alternatives (MGA) and Modelling All Alternatives (MAA), and provides new insights into the geometry of near-optimal feasible spaces and the importance of multi-decade weather variability for energy systems design. We also provide an effective way of working with a multi-decade time frame in a highly parallelised manner. Our implementation is open-sourced, adaptable and is based on PyPSA-Eur.
[Display omitted]
•Open energy system optimisation model for Europe run with decades of weather data.•Different weather years impact optimal solutions, but near-optimal spaces intersect.•Geometry of near-optimal spaces allows for robustness against perturbations.•More investment lowers variable costs & leads to more robustness and fewer emissions.•Approximating near-optimal spaces is parallelizable, making large problems tractable.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.eneco.2022.106496</doi><orcidid>https://orcid.org/0000-0002-1029-2858</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0140-9883 |
ispartof | Energy economics, 2023-02, Vol.118, p.106496, Article 106496 |
issn | 0140-9883 1873-6181 1873-6181 |
language | eng |
recordid | cdi_cristin_nora_10037_28061 |
source | NORA - Norwegian Open Research Archives; Elsevier ScienceDirect Journals Complete |
subjects | Climate-resilient energy systems Energy system optimisation model Modelling to generate alternatives Near-optimal solutions Robust energy systems Weather uncertainty |
title | Intersecting near-optimal spaces: European power systems with more resilience to weather variability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T15%3A17%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_crist&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intersecting%20near-optimal%20spaces:%20European%20power%20systems%20with%20more%20resilience%20to%20weather%20variability&rft.jtitle=Energy%20economics&rft.au=Grochowicz,%20Aleksander&rft.date=2023-02-01&rft.volume=118&rft.spage=106496&rft.pages=106496-&rft.artnum=106496&rft.issn=0140-9883&rft.eissn=1873-6181&rft_id=info:doi/10.1016/j.eneco.2022.106496&rft_dat=%3Celsevier_crist%3ES0140988322006259%3C/elsevier_crist%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0140988322006259&rfr_iscdi=true |