Statistical Analysis of Locally Parameterized Shapes
In statistical shape analysis, the establishment of correspondence and defining shape representation are crucial steps for hypothesis testing to detect and explain local dissimilarities between two groups of objects. Most commonly used shape representations are based on object properties that are ei...
Gespeichert in:
Veröffentlicht in: | Journal of computational and graphical statistics 2023-04, Vol.32 (2), p.658-670 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 670 |
---|---|
container_issue | 2 |
container_start_page | 658 |
container_title | Journal of computational and graphical statistics |
container_volume | 32 |
creator | Taheri, Mohsen Schulz, Jörn |
description | In statistical shape analysis, the establishment of correspondence and defining shape representation are crucial steps for hypothesis testing to detect and explain local dissimilarities between two groups of objects. Most commonly used shape representations are based on object properties that are either extrinsic or noninvariant to rigid transformation. Shape analysis based on noninvariant properties is biased because the act of alignment is necessary, and shape analysis based on extrinsic properties could be misleading. Besides, a mathematical explanation of the type of dissimilarity, for example, bending, twisting, stretching, etc., is desirable. This work proposes a novel hierarchical shape representation based on invariant and intrinsic properties to detect and explain locational dissimilarities by using local coordinate systems. The proposed shape representation is also superior for shape deformation and simulation. The power of the method is demonstrated on the hypothesis testing of simulated data as well as the left hippocampi of patients with Parkinson's disease and controls.
Supplementary materials
for this article are available online. |
doi_str_mv | 10.1080/10618600.2022.2116445 |
format | Article |
fullrecord | <record><control><sourceid>proquest_3HK</sourceid><recordid>TN_cdi_cristin_nora_10037_26669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2818535857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-e10c3d59c05336658a6d18ae046d0561a881520ca2606f334d51167faef334e03</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYMoOKcfQSz43Hlv0qTpm2M4FQYK0-dwaVPs6JqZdEj99KZse_Xp_uF3D-cexm4RZggaHhAUagUw48D5jCOqLJNnbIJS5CnPUZ7HPjLpCF2yqxA2AICqyCcsW_fUN6FvSmqTeUftEJqQuDpZubhph-SdPG1tb33za6tk_UU7G67ZRU1tsDfHOmWfy6ePxUu6ent-XcxXaZlB0acWoRSVLEqQQiglNakKNVnIVAVSIWmNkkNJXIGqhcgqGb3nNdlxsCCm7O6gW_rRYmc658kggMgNV0oVkbg_EDvvvvc29Gbj9j6-EQzXqKWQWuaRkicdF4K3tdn5Zkt-iFpmjNCcIjRjhOYYYbx7PNw1Xe38ln6cbyvT09A6X3vqyiYY8b_EH9cIc_k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2818535857</pqid></control><display><type>article</type><title>Statistical Analysis of Locally Parameterized Shapes</title><source>NORA - Norwegian Open Research Archives</source><creator>Taheri, Mohsen ; Schulz, Jörn</creator><creatorcontrib>Taheri, Mohsen ; Schulz, Jörn</creatorcontrib><description>In statistical shape analysis, the establishment of correspondence and defining shape representation are crucial steps for hypothesis testing to detect and explain local dissimilarities between two groups of objects. Most commonly used shape representations are based on object properties that are either extrinsic or noninvariant to rigid transformation. Shape analysis based on noninvariant properties is biased because the act of alignment is necessary, and shape analysis based on extrinsic properties could be misleading. Besides, a mathematical explanation of the type of dissimilarity, for example, bending, twisting, stretching, etc., is desirable. This work proposes a novel hierarchical shape representation based on invariant and intrinsic properties to detect and explain locational dissimilarities by using local coordinate systems. The proposed shape representation is also superior for shape deformation and simulation. The power of the method is demonstrated on the hypothesis testing of simulated data as well as the left hippocampi of patients with Parkinson's disease and controls.
Supplementary materials
for this article are available online.</description><identifier>ISSN: 1061-8600</identifier><identifier>ISSN: 1537-2715</identifier><identifier>EISSN: 1537-2715</identifier><identifier>DOI: 10.1080/10618600.2022.2116445</identifier><language>eng</language><publisher>Alexandria: Taylor & Francis</publisher><subject>Coordinates ; Hypotheses ; Hypothesis testing ; Local coordinate system ; Local dissimilarity ; Parkinson's disease ; Representations ; s-Rep hypothesis testing ; Shape alignment ; Skeletal representation ; Statistical analysis</subject><ispartof>Journal of computational and graphical statistics, 2023-04, Vol.32 (2), p.658-670</ispartof><rights>2022 The Author(s). Published with license by Taylor & Francis Group, LLC. 2022</rights><rights>2022 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-e10c3d59c05336658a6d18ae046d0561a881520ca2606f334d51167faef334e03</citedby><cites>FETCH-LOGICAL-c409t-e10c3d59c05336658a6d18ae046d0561a881520ca2606f334d51167faef334e03</cites><orcidid>0000-0003-4044-8507 ; 0000-0002-6240-4794</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,776,881,26544</link.rule.ids><linktorsrc>$$Uhttp://hdl.handle.net/10037/26669$$EView_record_in_NORA$$FView_record_in_$$GNORA$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Taheri, Mohsen</creatorcontrib><creatorcontrib>Schulz, Jörn</creatorcontrib><title>Statistical Analysis of Locally Parameterized Shapes</title><title>Journal of computational and graphical statistics</title><description>In statistical shape analysis, the establishment of correspondence and defining shape representation are crucial steps for hypothesis testing to detect and explain local dissimilarities between two groups of objects. Most commonly used shape representations are based on object properties that are either extrinsic or noninvariant to rigid transformation. Shape analysis based on noninvariant properties is biased because the act of alignment is necessary, and shape analysis based on extrinsic properties could be misleading. Besides, a mathematical explanation of the type of dissimilarity, for example, bending, twisting, stretching, etc., is desirable. This work proposes a novel hierarchical shape representation based on invariant and intrinsic properties to detect and explain locational dissimilarities by using local coordinate systems. The proposed shape representation is also superior for shape deformation and simulation. The power of the method is demonstrated on the hypothesis testing of simulated data as well as the left hippocampi of patients with Parkinson's disease and controls.
Supplementary materials
for this article are available online.</description><subject>Coordinates</subject><subject>Hypotheses</subject><subject>Hypothesis testing</subject><subject>Local coordinate system</subject><subject>Local dissimilarity</subject><subject>Parkinson's disease</subject><subject>Representations</subject><subject>s-Rep hypothesis testing</subject><subject>Shape alignment</subject><subject>Skeletal representation</subject><subject>Statistical analysis</subject><issn>1061-8600</issn><issn>1537-2715</issn><issn>1537-2715</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>3HK</sourceid><recordid>eNp9kF9LwzAUxYMoOKcfQSz43Hlv0qTpm2M4FQYK0-dwaVPs6JqZdEj99KZse_Xp_uF3D-cexm4RZggaHhAUagUw48D5jCOqLJNnbIJS5CnPUZ7HPjLpCF2yqxA2AICqyCcsW_fUN6FvSmqTeUftEJqQuDpZubhph-SdPG1tb33za6tk_UU7G67ZRU1tsDfHOmWfy6ePxUu6ent-XcxXaZlB0acWoRSVLEqQQiglNakKNVnIVAVSIWmNkkNJXIGqhcgqGb3nNdlxsCCm7O6gW_rRYmc658kggMgNV0oVkbg_EDvvvvc29Gbj9j6-EQzXqKWQWuaRkicdF4K3tdn5Zkt-iFpmjNCcIjRjhOYYYbx7PNw1Xe38ln6cbyvT09A6X3vqyiYY8b_EH9cIc_k</recordid><startdate>20230403</startdate><enddate>20230403</enddate><creator>Taheri, Mohsen</creator><creator>Schulz, Jörn</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>3HK</scope><orcidid>https://orcid.org/0000-0003-4044-8507</orcidid><orcidid>https://orcid.org/0000-0002-6240-4794</orcidid></search><sort><creationdate>20230403</creationdate><title>Statistical Analysis of Locally Parameterized Shapes</title><author>Taheri, Mohsen ; Schulz, Jörn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-e10c3d59c05336658a6d18ae046d0561a881520ca2606f334d51167faef334e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Coordinates</topic><topic>Hypotheses</topic><topic>Hypothesis testing</topic><topic>Local coordinate system</topic><topic>Local dissimilarity</topic><topic>Parkinson's disease</topic><topic>Representations</topic><topic>s-Rep hypothesis testing</topic><topic>Shape alignment</topic><topic>Skeletal representation</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taheri, Mohsen</creatorcontrib><creatorcontrib>Schulz, Jörn</creatorcontrib><collection>Taylor & Francis Open Access</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>NORA - Norwegian Open Research Archives</collection><jtitle>Journal of computational and graphical statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Taheri, Mohsen</au><au>Schulz, Jörn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical Analysis of Locally Parameterized Shapes</atitle><jtitle>Journal of computational and graphical statistics</jtitle><date>2023-04-03</date><risdate>2023</risdate><volume>32</volume><issue>2</issue><spage>658</spage><epage>670</epage><pages>658-670</pages><issn>1061-8600</issn><issn>1537-2715</issn><eissn>1537-2715</eissn><abstract>In statistical shape analysis, the establishment of correspondence and defining shape representation are crucial steps for hypothesis testing to detect and explain local dissimilarities between two groups of objects. Most commonly used shape representations are based on object properties that are either extrinsic or noninvariant to rigid transformation. Shape analysis based on noninvariant properties is biased because the act of alignment is necessary, and shape analysis based on extrinsic properties could be misleading. Besides, a mathematical explanation of the type of dissimilarity, for example, bending, twisting, stretching, etc., is desirable. This work proposes a novel hierarchical shape representation based on invariant and intrinsic properties to detect and explain locational dissimilarities by using local coordinate systems. The proposed shape representation is also superior for shape deformation and simulation. The power of the method is demonstrated on the hypothesis testing of simulated data as well as the left hippocampi of patients with Parkinson's disease and controls.
Supplementary materials
for this article are available online.</abstract><cop>Alexandria</cop><pub>Taylor & Francis</pub><doi>10.1080/10618600.2022.2116445</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4044-8507</orcidid><orcidid>https://orcid.org/0000-0002-6240-4794</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1061-8600 |
ispartof | Journal of computational and graphical statistics, 2023-04, Vol.32 (2), p.658-670 |
issn | 1061-8600 1537-2715 1537-2715 |
language | eng |
recordid | cdi_cristin_nora_10037_26669 |
source | NORA - Norwegian Open Research Archives |
subjects | Coordinates Hypotheses Hypothesis testing Local coordinate system Local dissimilarity Parkinson's disease Representations s-Rep hypothesis testing Shape alignment Skeletal representation Statistical analysis |
title | Statistical Analysis of Locally Parameterized Shapes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T09%3A02%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_3HK&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20Analysis%20of%20Locally%20Parameterized%20Shapes&rft.jtitle=Journal%20of%20computational%20and%20graphical%20statistics&rft.au=Taheri,%20Mohsen&rft.date=2023-04-03&rft.volume=32&rft.issue=2&rft.spage=658&rft.epage=670&rft.pages=658-670&rft.issn=1061-8600&rft.eissn=1537-2715&rft_id=info:doi/10.1080/10618600.2022.2116445&rft_dat=%3Cproquest_3HK%3E2818535857%3C/proquest_3HK%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2818535857&rft_id=info:pmid/&rfr_iscdi=true |