A comprehensive analysis of classification methods in gastrointestinal endoscopy imaging
•Benchmark of computer vision methods for multi-class gastroendoscopy image classification.•Longitudinal analysis for three consecutive years (2017 till 2019) crowd-source Medico challenge initiative.•Comprehensive analysis of methods on same dataset reveal the continuous progress of method developm...
Gespeichert in:
Veröffentlicht in: | Medical image analysis 2021-05, Vol.70, p.102007-102007, Article 102007 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 102007 |
---|---|
container_issue | |
container_start_page | 102007 |
container_title | Medical image analysis |
container_volume | 70 |
creator | Jha, Debesh Ali, Sharib Hicks, Steven Thambawita, Vajira Borgli, Hanna Smedsrud, Pia H. de Lange, Thomas Pogorelov, Konstantin Wang, Xiaowei Harzig, Philipp Tran, Minh-Triet Meng, Wenhua Hoang, Trung-Hieu Dias, Danielle Ko, Tobey H. Agrawal, Taruna Ostroukhova, Olga Khan, Zeshan Atif Tahir, Muhammad Liu, Yang Chang, Yuan Kirkerød, Mathias Johansen, Dag Lux, Mathias Johansen, Håvard D. Riegler, Michael A. Halvorsen, Pål |
description | •Benchmark of computer vision methods for multi-class gastroendoscopy image classification.•Longitudinal analysis for three consecutive years (2017 till 2019) crowd-source Medico challenge initiative.•Comprehensive analysis of methods on same dataset reveal the continuous progress of method development.•Efficiency task, hardware task and report generation tasks show the potential for clinically applicable methods.
[Display omitted]
Gastrointestinal (GI) endoscopy has been an active field of research motivated by the large number of highly lethal GI cancers. Early GI cancer precursors are often missed during the endoscopic surveillance. The high missed rate of such abnormalities during endoscopy is thus a critical bottleneck. Lack of attentiveness due to tiring procedures, and requirement of training are few contributing factors. An automatic GI disease classification system can help reduce such risks by flagging suspicious frames and lesions. GI endoscopy consists of several multi-organ surveillance, therefore, there is need to develop methods that can generalize to various endoscopic findings. In this realm, we present a comprehensive analysis of the Medico GI challenges: Medical Multimedia Task at MediaEval 2017, Medico Multimedia Task at MediaEval 2018, and BioMedia ACM MM Grand Challenge 2019. These challenges are initiative to set-up a benchmark for different computer vision methods applied to the multi-class endoscopic images and promote to build new approaches that could reliably be used in clinics. We report the performance of 21 participating teams over a period of three consecutive years and provide a detailed analysis of the methods used by the participants, highlighting the challenges and shortcomings of the current approaches and dissect their credibility for the use in clinical settings. Our analysis revealed that the participants achieved an improvement on maximum Mathew correlation coefficient (MCC) from 82.68% in 2017 to 93.98% in 2018 and 95.20% in 2019 challenges, and a significant increase in computational speed over consecutive years. |
doi_str_mv | 10.1016/j.media.2021.102007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_crist</sourceid><recordid>TN_cdi_cristin_nora_10037_23476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1361841521000530</els_id><sourcerecordid>2553855930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-c90f4a16e62928afd7ece7717c17705c09b5e7da95b272d1d5f3b24d3b7f81fa3</originalsourceid><addsrcrecordid>eNp9kU1vEzEQhi0Eop-_AAksceklwZ_r7IFDVbWAVIkLSNwsrz1OHe3awbOplH-PQ9oeOHDyyH7eeWf8EvKOsyVnvPu0WU4QklsKJni7EYyZV-SUy44vVkrI1y811yfkDHHDGqEUe0tOpDSq1eyU_LqmvkzbCg-QMT0CddmNe0xIS6R-dIgpJu_mVDKdYH4oAWnKdO1wriXlGXBOTUEhh4K-bPc0TW6d8vqCvIluRLh8Os_Jz7vbHzdfF_ffv3y7ub5feKW7eeF7FpXjHXSiFysXgwEPxnDjuTFMe9YPGkxwvR6EEYEHHeUgVJCDiSsenTwnH459fU2HWWwu1VnOmDRWSGW6RlwdiW0tv3dtYDsl9DCOLkPZoRWaSaU6yXhDP_6Dbsqutv0OlJYrrXvJGiWfLQtihWi3tW1d983WHqKxG_s3GnuIxh6jaar3T713Q3t90Txn0YDPRwDadz0mqBZ9guxbpwp-tqGk_xr8Ad16nzU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2553855930</pqid></control><display><type>article</type><title>A comprehensive analysis of classification methods in gastrointestinal endoscopy imaging</title><source>NORA - Norwegian Open Research Archives</source><source>Elsevier ScienceDirect Journals</source><creator>Jha, Debesh ; Ali, Sharib ; Hicks, Steven ; Thambawita, Vajira ; Borgli, Hanna ; Smedsrud, Pia H. ; de Lange, Thomas ; Pogorelov, Konstantin ; Wang, Xiaowei ; Harzig, Philipp ; Tran, Minh-Triet ; Meng, Wenhua ; Hoang, Trung-Hieu ; Dias, Danielle ; Ko, Tobey H. ; Agrawal, Taruna ; Ostroukhova, Olga ; Khan, Zeshan ; Atif Tahir, Muhammad ; Liu, Yang ; Chang, Yuan ; Kirkerød, Mathias ; Johansen, Dag ; Lux, Mathias ; Johansen, Håvard D. ; Riegler, Michael A. ; Halvorsen, Pål</creator><creatorcontrib>Jha, Debesh ; Ali, Sharib ; Hicks, Steven ; Thambawita, Vajira ; Borgli, Hanna ; Smedsrud, Pia H. ; de Lange, Thomas ; Pogorelov, Konstantin ; Wang, Xiaowei ; Harzig, Philipp ; Tran, Minh-Triet ; Meng, Wenhua ; Hoang, Trung-Hieu ; Dias, Danielle ; Ko, Tobey H. ; Agrawal, Taruna ; Ostroukhova, Olga ; Khan, Zeshan ; Atif Tahir, Muhammad ; Liu, Yang ; Chang, Yuan ; Kirkerød, Mathias ; Johansen, Dag ; Lux, Mathias ; Johansen, Håvard D. ; Riegler, Michael A. ; Halvorsen, Pål</creatorcontrib><description>•Benchmark of computer vision methods for multi-class gastroendoscopy image classification.•Longitudinal analysis for three consecutive years (2017 till 2019) crowd-source Medico challenge initiative.•Comprehensive analysis of methods on same dataset reveal the continuous progress of method development.•Efficiency task, hardware task and report generation tasks show the potential for clinically applicable methods.
[Display omitted]
Gastrointestinal (GI) endoscopy has been an active field of research motivated by the large number of highly lethal GI cancers. Early GI cancer precursors are often missed during the endoscopic surveillance. The high missed rate of such abnormalities during endoscopy is thus a critical bottleneck. Lack of attentiveness due to tiring procedures, and requirement of training are few contributing factors. An automatic GI disease classification system can help reduce such risks by flagging suspicious frames and lesions. GI endoscopy consists of several multi-organ surveillance, therefore, there is need to develop methods that can generalize to various endoscopic findings. In this realm, we present a comprehensive analysis of the Medico GI challenges: Medical Multimedia Task at MediaEval 2017, Medico Multimedia Task at MediaEval 2018, and BioMedia ACM MM Grand Challenge 2019. These challenges are initiative to set-up a benchmark for different computer vision methods applied to the multi-class endoscopic images and promote to build new approaches that could reliably be used in clinics. We report the performance of 21 participating teams over a period of three consecutive years and provide a detailed analysis of the methods used by the participants, highlighting the challenges and shortcomings of the current approaches and dissect their credibility for the use in clinical settings. Our analysis revealed that the participants achieved an improvement on maximum Mathew correlation coefficient (MCC) from 82.68% in 2017 to 93.98% in 2018 and 95.20% in 2019 challenges, and a significant increase in computational speed over consecutive years.</description><identifier>ISSN: 1361-8415</identifier><identifier>ISSN: 1361-8423</identifier><identifier>EISSN: 1361-8423</identifier><identifier>DOI: 10.1016/j.media.2021.102007</identifier><identifier>PMID: 33740740</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Abnormalities ; Artificial intelligence ; BioMedia 2019 grand challenge ; Cancer ; Classification ; Computer applications ; Computer vision ; Computer-aided detection and diagnosis ; Correlation coefficient ; Correlation coefficients ; Endoscopy ; Gastrointestinal endoscopy challenges ; Informasjons- og kommunikasjonsvitenskap: 420 ; Information and communication science: 420 ; Matematikk og Naturvitenskap: 400 ; Mathematics and natural science: 400 ; Medical imaging ; Medico Task 2017 ; Medico Task 2018 ; Multimedia ; Surveillance ; VDP</subject><ispartof>Medical image analysis, 2021-05, Vol.70, p.102007-102007, Article 102007</ispartof><rights>2021</rights><rights>Copyright © 2021. Published by Elsevier B.V.</rights><rights>Copyright Elsevier BV May 2021</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-c90f4a16e62928afd7ece7717c17705c09b5e7da95b272d1d5f3b24d3b7f81fa3</citedby><cites>FETCH-LOGICAL-c456t-c90f4a16e62928afd7ece7717c17705c09b5e7da95b272d1d5f3b24d3b7f81fa3</cites><orcidid>0000-0001-9925-6134 ; 0000-0002-4960-0600 ; 0000-0001-9034-3602 ; 0000-0002-7993-1769 ; 0000-0001-6026-0929 ; 0000-0003-3989-7487 ; 0000-0002-5238-1365 ; 0000-0002-1637-7262 ; 0000-0002-0166-3944 ; 0000-0001-7067-6477 ; 0000-0003-1366-8408 ; 0000-0002-7386-2264 ; 0000-0003-1313-3542 ; 0000-0002-3244-9641 ; 0000-0003-4314-1017</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1361841521000530$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,26544,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33740740$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jha, Debesh</creatorcontrib><creatorcontrib>Ali, Sharib</creatorcontrib><creatorcontrib>Hicks, Steven</creatorcontrib><creatorcontrib>Thambawita, Vajira</creatorcontrib><creatorcontrib>Borgli, Hanna</creatorcontrib><creatorcontrib>Smedsrud, Pia H.</creatorcontrib><creatorcontrib>de Lange, Thomas</creatorcontrib><creatorcontrib>Pogorelov, Konstantin</creatorcontrib><creatorcontrib>Wang, Xiaowei</creatorcontrib><creatorcontrib>Harzig, Philipp</creatorcontrib><creatorcontrib>Tran, Minh-Triet</creatorcontrib><creatorcontrib>Meng, Wenhua</creatorcontrib><creatorcontrib>Hoang, Trung-Hieu</creatorcontrib><creatorcontrib>Dias, Danielle</creatorcontrib><creatorcontrib>Ko, Tobey H.</creatorcontrib><creatorcontrib>Agrawal, Taruna</creatorcontrib><creatorcontrib>Ostroukhova, Olga</creatorcontrib><creatorcontrib>Khan, Zeshan</creatorcontrib><creatorcontrib>Atif Tahir, Muhammad</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Chang, Yuan</creatorcontrib><creatorcontrib>Kirkerød, Mathias</creatorcontrib><creatorcontrib>Johansen, Dag</creatorcontrib><creatorcontrib>Lux, Mathias</creatorcontrib><creatorcontrib>Johansen, Håvard D.</creatorcontrib><creatorcontrib>Riegler, Michael A.</creatorcontrib><creatorcontrib>Halvorsen, Pål</creatorcontrib><title>A comprehensive analysis of classification methods in gastrointestinal endoscopy imaging</title><title>Medical image analysis</title><addtitle>Med Image Anal</addtitle><description>•Benchmark of computer vision methods for multi-class gastroendoscopy image classification.•Longitudinal analysis for three consecutive years (2017 till 2019) crowd-source Medico challenge initiative.•Comprehensive analysis of methods on same dataset reveal the continuous progress of method development.•Efficiency task, hardware task and report generation tasks show the potential for clinically applicable methods.
[Display omitted]
Gastrointestinal (GI) endoscopy has been an active field of research motivated by the large number of highly lethal GI cancers. Early GI cancer precursors are often missed during the endoscopic surveillance. The high missed rate of such abnormalities during endoscopy is thus a critical bottleneck. Lack of attentiveness due to tiring procedures, and requirement of training are few contributing factors. An automatic GI disease classification system can help reduce such risks by flagging suspicious frames and lesions. GI endoscopy consists of several multi-organ surveillance, therefore, there is need to develop methods that can generalize to various endoscopic findings. In this realm, we present a comprehensive analysis of the Medico GI challenges: Medical Multimedia Task at MediaEval 2017, Medico Multimedia Task at MediaEval 2018, and BioMedia ACM MM Grand Challenge 2019. These challenges are initiative to set-up a benchmark for different computer vision methods applied to the multi-class endoscopic images and promote to build new approaches that could reliably be used in clinics. We report the performance of 21 participating teams over a period of three consecutive years and provide a detailed analysis of the methods used by the participants, highlighting the challenges and shortcomings of the current approaches and dissect their credibility for the use in clinical settings. Our analysis revealed that the participants achieved an improvement on maximum Mathew correlation coefficient (MCC) from 82.68% in 2017 to 93.98% in 2018 and 95.20% in 2019 challenges, and a significant increase in computational speed over consecutive years.</description><subject>Abnormalities</subject><subject>Artificial intelligence</subject><subject>BioMedia 2019 grand challenge</subject><subject>Cancer</subject><subject>Classification</subject><subject>Computer applications</subject><subject>Computer vision</subject><subject>Computer-aided detection and diagnosis</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Endoscopy</subject><subject>Gastrointestinal endoscopy challenges</subject><subject>Informasjons- og kommunikasjonsvitenskap: 420</subject><subject>Information and communication science: 420</subject><subject>Matematikk og Naturvitenskap: 400</subject><subject>Mathematics and natural science: 400</subject><subject>Medical imaging</subject><subject>Medico Task 2017</subject><subject>Medico Task 2018</subject><subject>Multimedia</subject><subject>Surveillance</subject><subject>VDP</subject><issn>1361-8415</issn><issn>1361-8423</issn><issn>1361-8423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNp9kU1vEzEQhi0Eop-_AAksceklwZ_r7IFDVbWAVIkLSNwsrz1OHe3awbOplH-PQ9oeOHDyyH7eeWf8EvKOsyVnvPu0WU4QklsKJni7EYyZV-SUy44vVkrI1y811yfkDHHDGqEUe0tOpDSq1eyU_LqmvkzbCg-QMT0CddmNe0xIS6R-dIgpJu_mVDKdYH4oAWnKdO1wriXlGXBOTUEhh4K-bPc0TW6d8vqCvIluRLh8Os_Jz7vbHzdfF_ffv3y7ub5feKW7eeF7FpXjHXSiFysXgwEPxnDjuTFMe9YPGkxwvR6EEYEHHeUgVJCDiSsenTwnH459fU2HWWwu1VnOmDRWSGW6RlwdiW0tv3dtYDsl9DCOLkPZoRWaSaU6yXhDP_6Dbsqutv0OlJYrrXvJGiWfLQtihWi3tW1d983WHqKxG_s3GnuIxh6jaar3T713Q3t90Txn0YDPRwDadz0mqBZ9guxbpwp-tqGk_xr8Ad16nzU</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Jha, Debesh</creator><creator>Ali, Sharib</creator><creator>Hicks, Steven</creator><creator>Thambawita, Vajira</creator><creator>Borgli, Hanna</creator><creator>Smedsrud, Pia H.</creator><creator>de Lange, Thomas</creator><creator>Pogorelov, Konstantin</creator><creator>Wang, Xiaowei</creator><creator>Harzig, Philipp</creator><creator>Tran, Minh-Triet</creator><creator>Meng, Wenhua</creator><creator>Hoang, Trung-Hieu</creator><creator>Dias, Danielle</creator><creator>Ko, Tobey H.</creator><creator>Agrawal, Taruna</creator><creator>Ostroukhova, Olga</creator><creator>Khan, Zeshan</creator><creator>Atif Tahir, Muhammad</creator><creator>Liu, Yang</creator><creator>Chang, Yuan</creator><creator>Kirkerød, Mathias</creator><creator>Johansen, Dag</creator><creator>Lux, Mathias</creator><creator>Johansen, Håvard D.</creator><creator>Riegler, Michael A.</creator><creator>Halvorsen, Pål</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>3HK</scope><orcidid>https://orcid.org/0000-0001-9925-6134</orcidid><orcidid>https://orcid.org/0000-0002-4960-0600</orcidid><orcidid>https://orcid.org/0000-0001-9034-3602</orcidid><orcidid>https://orcid.org/0000-0002-7993-1769</orcidid><orcidid>https://orcid.org/0000-0001-6026-0929</orcidid><orcidid>https://orcid.org/0000-0003-3989-7487</orcidid><orcidid>https://orcid.org/0000-0002-5238-1365</orcidid><orcidid>https://orcid.org/0000-0002-1637-7262</orcidid><orcidid>https://orcid.org/0000-0002-0166-3944</orcidid><orcidid>https://orcid.org/0000-0001-7067-6477</orcidid><orcidid>https://orcid.org/0000-0003-1366-8408</orcidid><orcidid>https://orcid.org/0000-0002-7386-2264</orcidid><orcidid>https://orcid.org/0000-0003-1313-3542</orcidid><orcidid>https://orcid.org/0000-0002-3244-9641</orcidid><orcidid>https://orcid.org/0000-0003-4314-1017</orcidid></search><sort><creationdate>20210501</creationdate><title>A comprehensive analysis of classification methods in gastrointestinal endoscopy imaging</title><author>Jha, Debesh ; Ali, Sharib ; Hicks, Steven ; Thambawita, Vajira ; Borgli, Hanna ; Smedsrud, Pia H. ; de Lange, Thomas ; Pogorelov, Konstantin ; Wang, Xiaowei ; Harzig, Philipp ; Tran, Minh-Triet ; Meng, Wenhua ; Hoang, Trung-Hieu ; Dias, Danielle ; Ko, Tobey H. ; Agrawal, Taruna ; Ostroukhova, Olga ; Khan, Zeshan ; Atif Tahir, Muhammad ; Liu, Yang ; Chang, Yuan ; Kirkerød, Mathias ; Johansen, Dag ; Lux, Mathias ; Johansen, Håvard D. ; Riegler, Michael A. ; Halvorsen, Pål</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-c90f4a16e62928afd7ece7717c17705c09b5e7da95b272d1d5f3b24d3b7f81fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abnormalities</topic><topic>Artificial intelligence</topic><topic>BioMedia 2019 grand challenge</topic><topic>Cancer</topic><topic>Classification</topic><topic>Computer applications</topic><topic>Computer vision</topic><topic>Computer-aided detection and diagnosis</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Endoscopy</topic><topic>Gastrointestinal endoscopy challenges</topic><topic>Informasjons- og kommunikasjonsvitenskap: 420</topic><topic>Information and communication science: 420</topic><topic>Matematikk og Naturvitenskap: 400</topic><topic>Mathematics and natural science: 400</topic><topic>Medical imaging</topic><topic>Medico Task 2017</topic><topic>Medico Task 2018</topic><topic>Multimedia</topic><topic>Surveillance</topic><topic>VDP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jha, Debesh</creatorcontrib><creatorcontrib>Ali, Sharib</creatorcontrib><creatorcontrib>Hicks, Steven</creatorcontrib><creatorcontrib>Thambawita, Vajira</creatorcontrib><creatorcontrib>Borgli, Hanna</creatorcontrib><creatorcontrib>Smedsrud, Pia H.</creatorcontrib><creatorcontrib>de Lange, Thomas</creatorcontrib><creatorcontrib>Pogorelov, Konstantin</creatorcontrib><creatorcontrib>Wang, Xiaowei</creatorcontrib><creatorcontrib>Harzig, Philipp</creatorcontrib><creatorcontrib>Tran, Minh-Triet</creatorcontrib><creatorcontrib>Meng, Wenhua</creatorcontrib><creatorcontrib>Hoang, Trung-Hieu</creatorcontrib><creatorcontrib>Dias, Danielle</creatorcontrib><creatorcontrib>Ko, Tobey H.</creatorcontrib><creatorcontrib>Agrawal, Taruna</creatorcontrib><creatorcontrib>Ostroukhova, Olga</creatorcontrib><creatorcontrib>Khan, Zeshan</creatorcontrib><creatorcontrib>Atif Tahir, Muhammad</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Chang, Yuan</creatorcontrib><creatorcontrib>Kirkerød, Mathias</creatorcontrib><creatorcontrib>Johansen, Dag</creatorcontrib><creatorcontrib>Lux, Mathias</creatorcontrib><creatorcontrib>Johansen, Håvard D.</creatorcontrib><creatorcontrib>Riegler, Michael A.</creatorcontrib><creatorcontrib>Halvorsen, Pål</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>NORA - Norwegian Open Research Archives</collection><jtitle>Medical image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jha, Debesh</au><au>Ali, Sharib</au><au>Hicks, Steven</au><au>Thambawita, Vajira</au><au>Borgli, Hanna</au><au>Smedsrud, Pia H.</au><au>de Lange, Thomas</au><au>Pogorelov, Konstantin</au><au>Wang, Xiaowei</au><au>Harzig, Philipp</au><au>Tran, Minh-Triet</au><au>Meng, Wenhua</au><au>Hoang, Trung-Hieu</au><au>Dias, Danielle</au><au>Ko, Tobey H.</au><au>Agrawal, Taruna</au><au>Ostroukhova, Olga</au><au>Khan, Zeshan</au><au>Atif Tahir, Muhammad</au><au>Liu, Yang</au><au>Chang, Yuan</au><au>Kirkerød, Mathias</au><au>Johansen, Dag</au><au>Lux, Mathias</au><au>Johansen, Håvard D.</au><au>Riegler, Michael A.</au><au>Halvorsen, Pål</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comprehensive analysis of classification methods in gastrointestinal endoscopy imaging</atitle><jtitle>Medical image analysis</jtitle><addtitle>Med Image Anal</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>70</volume><spage>102007</spage><epage>102007</epage><pages>102007-102007</pages><artnum>102007</artnum><issn>1361-8415</issn><issn>1361-8423</issn><eissn>1361-8423</eissn><abstract>•Benchmark of computer vision methods for multi-class gastroendoscopy image classification.•Longitudinal analysis for three consecutive years (2017 till 2019) crowd-source Medico challenge initiative.•Comprehensive analysis of methods on same dataset reveal the continuous progress of method development.•Efficiency task, hardware task and report generation tasks show the potential for clinically applicable methods.
[Display omitted]
Gastrointestinal (GI) endoscopy has been an active field of research motivated by the large number of highly lethal GI cancers. Early GI cancer precursors are often missed during the endoscopic surveillance. The high missed rate of such abnormalities during endoscopy is thus a critical bottleneck. Lack of attentiveness due to tiring procedures, and requirement of training are few contributing factors. An automatic GI disease classification system can help reduce such risks by flagging suspicious frames and lesions. GI endoscopy consists of several multi-organ surveillance, therefore, there is need to develop methods that can generalize to various endoscopic findings. In this realm, we present a comprehensive analysis of the Medico GI challenges: Medical Multimedia Task at MediaEval 2017, Medico Multimedia Task at MediaEval 2018, and BioMedia ACM MM Grand Challenge 2019. These challenges are initiative to set-up a benchmark for different computer vision methods applied to the multi-class endoscopic images and promote to build new approaches that could reliably be used in clinics. We report the performance of 21 participating teams over a period of three consecutive years and provide a detailed analysis of the methods used by the participants, highlighting the challenges and shortcomings of the current approaches and dissect their credibility for the use in clinical settings. Our analysis revealed that the participants achieved an improvement on maximum Mathew correlation coefficient (MCC) from 82.68% in 2017 to 93.98% in 2018 and 95.20% in 2019 challenges, and a significant increase in computational speed over consecutive years.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>33740740</pmid><doi>10.1016/j.media.2021.102007</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9925-6134</orcidid><orcidid>https://orcid.org/0000-0002-4960-0600</orcidid><orcidid>https://orcid.org/0000-0001-9034-3602</orcidid><orcidid>https://orcid.org/0000-0002-7993-1769</orcidid><orcidid>https://orcid.org/0000-0001-6026-0929</orcidid><orcidid>https://orcid.org/0000-0003-3989-7487</orcidid><orcidid>https://orcid.org/0000-0002-5238-1365</orcidid><orcidid>https://orcid.org/0000-0002-1637-7262</orcidid><orcidid>https://orcid.org/0000-0002-0166-3944</orcidid><orcidid>https://orcid.org/0000-0001-7067-6477</orcidid><orcidid>https://orcid.org/0000-0003-1366-8408</orcidid><orcidid>https://orcid.org/0000-0002-7386-2264</orcidid><orcidid>https://orcid.org/0000-0003-1313-3542</orcidid><orcidid>https://orcid.org/0000-0002-3244-9641</orcidid><orcidid>https://orcid.org/0000-0003-4314-1017</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1361-8415 |
ispartof | Medical image analysis, 2021-05, Vol.70, p.102007-102007, Article 102007 |
issn | 1361-8415 1361-8423 1361-8423 |
language | eng |
recordid | cdi_cristin_nora_10037_23476 |
source | NORA - Norwegian Open Research Archives; Elsevier ScienceDirect Journals |
subjects | Abnormalities Artificial intelligence BioMedia 2019 grand challenge Cancer Classification Computer applications Computer vision Computer-aided detection and diagnosis Correlation coefficient Correlation coefficients Endoscopy Gastrointestinal endoscopy challenges Informasjons- og kommunikasjonsvitenskap: 420 Information and communication science: 420 Matematikk og Naturvitenskap: 400 Mathematics and natural science: 400 Medical imaging Medico Task 2017 Medico Task 2018 Multimedia Surveillance VDP |
title | A comprehensive analysis of classification methods in gastrointestinal endoscopy imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A54%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_crist&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comprehensive%20analysis%20of%20classification%20methods%20in%20gastrointestinal%20endoscopy%20imaging&rft.jtitle=Medical%20image%20analysis&rft.au=Jha,%20Debesh&rft.date=2021-05-01&rft.volume=70&rft.spage=102007&rft.epage=102007&rft.pages=102007-102007&rft.artnum=102007&rft.issn=1361-8415&rft.eissn=1361-8423&rft_id=info:doi/10.1016/j.media.2021.102007&rft_dat=%3Cproquest_crist%3E2553855930%3C/proquest_crist%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2553855930&rft_id=info:pmid/33740740&rft_els_id=S1361841521000530&rfr_iscdi=true |