Biomimicry of microbial polysaccharide hydrogels for tissue engineering and regenerative medicine – A review

•Biomimicry of microbial polysaccharide hydrogels as TERM scaffolds is discussed.•Microbial polysaccharides form hydrogels easily but lack bioactivity.•Emphasis is placed on material blending with bioactive materials for bioactivity.•A list of organic and inorganic bioactive materials is curated in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbohydrate polymers 2020-08, Vol.241, p.116345-116345, Article 116345
Hauptverfasser: Ng, Jian Yao, Obuobi, Sybil, Chua, Mei Ling, Zhang, Chi, Hong, Shiqi, Kumar, Yogesh, Gokhale, Rajeev, Ee, Pui Lai Rachel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 116345
container_issue
container_start_page 116345
container_title Carbohydrate polymers
container_volume 241
creator Ng, Jian Yao
Obuobi, Sybil
Chua, Mei Ling
Zhang, Chi
Hong, Shiqi
Kumar, Yogesh
Gokhale, Rajeev
Ee, Pui Lai Rachel
description •Biomimicry of microbial polysaccharide hydrogels as TERM scaffolds is discussed.•Microbial polysaccharides form hydrogels easily but lack bioactivity.•Emphasis is placed on material blending with bioactive materials for bioactivity.•A list of organic and inorganic bioactive materials is curated in this review. Hydrogels as artificial biomaterial scaffolds offer a much favoured 3D microenvironment for tissue engineering and regenerative medicine (TERM). Towards biomimicry of the native ECM, polysaccharides from Nature have been proposed as ideal surrogates given their biocompatibility. In particular, derivatives from microbial sources have emerged as economical and sustainable biomaterials due to their fast and high yielding production procedures. Despite these merits, microbial polysaccharides do not interact biologically with human tissues, a critical limitation hampering their translation into paradigmatic scaffolds for in vitro 3D cell culture. To overcome this, chemical and biological functionalization of polysaccharide scaffolds have been explored extensively. This review outlines the most recent strategies in the preparation of biofunctionalized gellan gum, xanthan gum and dextran hydrogels fabricated exclusively via material blending. Using inorganic or organic materials, we discuss the impact of these approaches on cell adhesion, proliferation and viability of anchorage-dependent cells for various TERM applications.’
doi_str_mv 10.1016/j.carbpol.2020.116345
format Article
fullrecord <record><control><sourceid>proquest_crist</sourceid><recordid>TN_cdi_cristin_nora_10037_20699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0144861720305191</els_id><sourcerecordid>2410731459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-448827ae4c378ce2bf1f8b081efe885a7a701cf5a3f8d7d1ffb213e6e67c1aee3</originalsourceid><addsrcrecordid>eNqFkc9uEzEQxi0EoqHwCICPXDZ4bO_aOaFSlT9SJS5wtrzecepo1w72pig33oE35EnqVVKuzMUjzzffSL-PkNfA1sCge79bO5v7fRrXnPH6B52Q7ROyAq02DQgpn5IVAykb3YG6IC9K2bFaHbDn5ELwlikOmxWJH0OawhRcPtLk6dKkPtiRVudjsc7d2RwGpHfHIactjoX6lOkcSjkgxbgNETGHuKU2DjTjFiNmO4d7pBMOwdUx_fv7D72qs_uAv16SZ96OBV-d30vy49PN9-svze23z1-vr24b1zI-N1JqzZVF6YTSDnnvweueaUCPWrdWWcXA-dYKrwc1gPc9B4EddsqBRRSX5O3J1-VQ5hBNTNkaYEwow1m32VTFu5Nin9PPA5bZTKE4HEcbMR2K4RKYEiDbRdo-mqVSMnqzz2Gy-VgNzRKG2ZlzGGYJw5zCqHtvzicOfaXxb-uRfhV8OAkq1wVPNsUFjK6Sy-hmM6TwnxMPyrefWg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2410731459</pqid></control><display><type>article</type><title>Biomimicry of microbial polysaccharide hydrogels for tissue engineering and regenerative medicine – A review</title><source>MEDLINE</source><source>NORA - Norwegian Open Research Archives</source><source>Elsevier ScienceDirect Journals</source><creator>Ng, Jian Yao ; Obuobi, Sybil ; Chua, Mei Ling ; Zhang, Chi ; Hong, Shiqi ; Kumar, Yogesh ; Gokhale, Rajeev ; Ee, Pui Lai Rachel</creator><creatorcontrib>Ng, Jian Yao ; Obuobi, Sybil ; Chua, Mei Ling ; Zhang, Chi ; Hong, Shiqi ; Kumar, Yogesh ; Gokhale, Rajeev ; Ee, Pui Lai Rachel</creatorcontrib><description>•Biomimicry of microbial polysaccharide hydrogels as TERM scaffolds is discussed.•Microbial polysaccharides form hydrogels easily but lack bioactivity.•Emphasis is placed on material blending with bioactive materials for bioactivity.•A list of organic and inorganic bioactive materials is curated in this review. Hydrogels as artificial biomaterial scaffolds offer a much favoured 3D microenvironment for tissue engineering and regenerative medicine (TERM). Towards biomimicry of the native ECM, polysaccharides from Nature have been proposed as ideal surrogates given their biocompatibility. In particular, derivatives from microbial sources have emerged as economical and sustainable biomaterials due to their fast and high yielding production procedures. Despite these merits, microbial polysaccharides do not interact biologically with human tissues, a critical limitation hampering their translation into paradigmatic scaffolds for in vitro 3D cell culture. To overcome this, chemical and biological functionalization of polysaccharide scaffolds have been explored extensively. This review outlines the most recent strategies in the preparation of biofunctionalized gellan gum, xanthan gum and dextran hydrogels fabricated exclusively via material blending. Using inorganic or organic materials, we discuss the impact of these approaches on cell adhesion, proliferation and viability of anchorage-dependent cells for various TERM applications.’</description><identifier>ISSN: 0144-8617</identifier><identifier>ISSN: 1879-1344</identifier><identifier>EISSN: 1879-1344</identifier><identifier>DOI: 10.1016/j.carbpol.2020.116345</identifier><identifier>PMID: 32507219</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Basale medisinske, odontologiske og veterinærmedisinske fag: 710 ; Basic medical, dental and veterinary science disciplines: 710 ; Biocompatible Materials ; Biofunctionalization ; Cell Adhesion ; Cell Line ; Cell proliferation ; Cell Survival ; Farmakologi: 728 ; Humans ; Hydrogels ; Material blending ; Medical disciplines: 700 ; Medisinske Fag: 700 ; Microbial polysaccharide hydrogel ; Pharmacology: 728 ; Polysaccharides, Bacterial ; Regenerative Medicine ; Tissue Engineering ; Tissue engineering and regenerative medicine (TERM) ; VDP</subject><ispartof>Carbohydrate polymers, 2020-08, Vol.241, p.116345-116345, Article 116345</ispartof><rights>2020 The Author(s)</rights><rights>Copyright © 2020 The Author(s). Published by Elsevier Ltd.. All rights reserved.</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-448827ae4c378ce2bf1f8b081efe885a7a701cf5a3f8d7d1ffb213e6e67c1aee3</citedby><cites>FETCH-LOGICAL-c502t-448827ae4c378ce2bf1f8b081efe885a7a701cf5a3f8d7d1ffb213e6e67c1aee3</cites><orcidid>0000-0002-7277-6233</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0144861720305191$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,26544,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32507219$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ng, Jian Yao</creatorcontrib><creatorcontrib>Obuobi, Sybil</creatorcontrib><creatorcontrib>Chua, Mei Ling</creatorcontrib><creatorcontrib>Zhang, Chi</creatorcontrib><creatorcontrib>Hong, Shiqi</creatorcontrib><creatorcontrib>Kumar, Yogesh</creatorcontrib><creatorcontrib>Gokhale, Rajeev</creatorcontrib><creatorcontrib>Ee, Pui Lai Rachel</creatorcontrib><title>Biomimicry of microbial polysaccharide hydrogels for tissue engineering and regenerative medicine – A review</title><title>Carbohydrate polymers</title><addtitle>Carbohydr Polym</addtitle><description>•Biomimicry of microbial polysaccharide hydrogels as TERM scaffolds is discussed.•Microbial polysaccharides form hydrogels easily but lack bioactivity.•Emphasis is placed on material blending with bioactive materials for bioactivity.•A list of organic and inorganic bioactive materials is curated in this review. Hydrogels as artificial biomaterial scaffolds offer a much favoured 3D microenvironment for tissue engineering and regenerative medicine (TERM). Towards biomimicry of the native ECM, polysaccharides from Nature have been proposed as ideal surrogates given their biocompatibility. In particular, derivatives from microbial sources have emerged as economical and sustainable biomaterials due to their fast and high yielding production procedures. Despite these merits, microbial polysaccharides do not interact biologically with human tissues, a critical limitation hampering their translation into paradigmatic scaffolds for in vitro 3D cell culture. To overcome this, chemical and biological functionalization of polysaccharide scaffolds have been explored extensively. This review outlines the most recent strategies in the preparation of biofunctionalized gellan gum, xanthan gum and dextran hydrogels fabricated exclusively via material blending. Using inorganic or organic materials, we discuss the impact of these approaches on cell adhesion, proliferation and viability of anchorage-dependent cells for various TERM applications.’</description><subject>Animals</subject><subject>Basale medisinske, odontologiske og veterinærmedisinske fag: 710</subject><subject>Basic medical, dental and veterinary science disciplines: 710</subject><subject>Biocompatible Materials</subject><subject>Biofunctionalization</subject><subject>Cell Adhesion</subject><subject>Cell Line</subject><subject>Cell proliferation</subject><subject>Cell Survival</subject><subject>Farmakologi: 728</subject><subject>Humans</subject><subject>Hydrogels</subject><subject>Material blending</subject><subject>Medical disciplines: 700</subject><subject>Medisinske Fag: 700</subject><subject>Microbial polysaccharide hydrogel</subject><subject>Pharmacology: 728</subject><subject>Polysaccharides, Bacterial</subject><subject>Regenerative Medicine</subject><subject>Tissue Engineering</subject><subject>Tissue engineering and regenerative medicine (TERM)</subject><subject>VDP</subject><issn>0144-8617</issn><issn>1879-1344</issn><issn>1879-1344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>3HK</sourceid><recordid>eNqFkc9uEzEQxi0EoqHwCICPXDZ4bO_aOaFSlT9SJS5wtrzecepo1w72pig33oE35EnqVVKuzMUjzzffSL-PkNfA1sCge79bO5v7fRrXnPH6B52Q7ROyAq02DQgpn5IVAykb3YG6IC9K2bFaHbDn5ELwlikOmxWJH0OawhRcPtLk6dKkPtiRVudjsc7d2RwGpHfHIactjoX6lOkcSjkgxbgNETGHuKU2DjTjFiNmO4d7pBMOwdUx_fv7D72qs_uAv16SZ96OBV-d30vy49PN9-svze23z1-vr24b1zI-N1JqzZVF6YTSDnnvweueaUCPWrdWWcXA-dYKrwc1gPc9B4EddsqBRRSX5O3J1-VQ5hBNTNkaYEwow1m32VTFu5Nin9PPA5bZTKE4HEcbMR2K4RKYEiDbRdo-mqVSMnqzz2Gy-VgNzRKG2ZlzGGYJw5zCqHtvzicOfaXxb-uRfhV8OAkq1wVPNsUFjK6Sy-hmM6TwnxMPyrefWg</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Ng, Jian Yao</creator><creator>Obuobi, Sybil</creator><creator>Chua, Mei Ling</creator><creator>Zhang, Chi</creator><creator>Hong, Shiqi</creator><creator>Kumar, Yogesh</creator><creator>Gokhale, Rajeev</creator><creator>Ee, Pui Lai Rachel</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>3HK</scope><orcidid>https://orcid.org/0000-0002-7277-6233</orcidid></search><sort><creationdate>20200801</creationdate><title>Biomimicry of microbial polysaccharide hydrogels for tissue engineering and regenerative medicine – A review</title><author>Ng, Jian Yao ; Obuobi, Sybil ; Chua, Mei Ling ; Zhang, Chi ; Hong, Shiqi ; Kumar, Yogesh ; Gokhale, Rajeev ; Ee, Pui Lai Rachel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-448827ae4c378ce2bf1f8b081efe885a7a701cf5a3f8d7d1ffb213e6e67c1aee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Basale medisinske, odontologiske og veterinærmedisinske fag: 710</topic><topic>Basic medical, dental and veterinary science disciplines: 710</topic><topic>Biocompatible Materials</topic><topic>Biofunctionalization</topic><topic>Cell Adhesion</topic><topic>Cell Line</topic><topic>Cell proliferation</topic><topic>Cell Survival</topic><topic>Farmakologi: 728</topic><topic>Humans</topic><topic>Hydrogels</topic><topic>Material blending</topic><topic>Medical disciplines: 700</topic><topic>Medisinske Fag: 700</topic><topic>Microbial polysaccharide hydrogel</topic><topic>Pharmacology: 728</topic><topic>Polysaccharides, Bacterial</topic><topic>Regenerative Medicine</topic><topic>Tissue Engineering</topic><topic>Tissue engineering and regenerative medicine (TERM)</topic><topic>VDP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ng, Jian Yao</creatorcontrib><creatorcontrib>Obuobi, Sybil</creatorcontrib><creatorcontrib>Chua, Mei Ling</creatorcontrib><creatorcontrib>Zhang, Chi</creatorcontrib><creatorcontrib>Hong, Shiqi</creatorcontrib><creatorcontrib>Kumar, Yogesh</creatorcontrib><creatorcontrib>Gokhale, Rajeev</creatorcontrib><creatorcontrib>Ee, Pui Lai Rachel</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>NORA - Norwegian Open Research Archives</collection><jtitle>Carbohydrate polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ng, Jian Yao</au><au>Obuobi, Sybil</au><au>Chua, Mei Ling</au><au>Zhang, Chi</au><au>Hong, Shiqi</au><au>Kumar, Yogesh</au><au>Gokhale, Rajeev</au><au>Ee, Pui Lai Rachel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomimicry of microbial polysaccharide hydrogels for tissue engineering and regenerative medicine – A review</atitle><jtitle>Carbohydrate polymers</jtitle><addtitle>Carbohydr Polym</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>241</volume><spage>116345</spage><epage>116345</epage><pages>116345-116345</pages><artnum>116345</artnum><issn>0144-8617</issn><issn>1879-1344</issn><eissn>1879-1344</eissn><abstract>•Biomimicry of microbial polysaccharide hydrogels as TERM scaffolds is discussed.•Microbial polysaccharides form hydrogels easily but lack bioactivity.•Emphasis is placed on material blending with bioactive materials for bioactivity.•A list of organic and inorganic bioactive materials is curated in this review. Hydrogels as artificial biomaterial scaffolds offer a much favoured 3D microenvironment for tissue engineering and regenerative medicine (TERM). Towards biomimicry of the native ECM, polysaccharides from Nature have been proposed as ideal surrogates given their biocompatibility. In particular, derivatives from microbial sources have emerged as economical and sustainable biomaterials due to their fast and high yielding production procedures. Despite these merits, microbial polysaccharides do not interact biologically with human tissues, a critical limitation hampering their translation into paradigmatic scaffolds for in vitro 3D cell culture. To overcome this, chemical and biological functionalization of polysaccharide scaffolds have been explored extensively. This review outlines the most recent strategies in the preparation of biofunctionalized gellan gum, xanthan gum and dextran hydrogels fabricated exclusively via material blending. Using inorganic or organic materials, we discuss the impact of these approaches on cell adhesion, proliferation and viability of anchorage-dependent cells for various TERM applications.’</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>32507219</pmid><doi>10.1016/j.carbpol.2020.116345</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7277-6233</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0144-8617
ispartof Carbohydrate polymers, 2020-08, Vol.241, p.116345-116345, Article 116345
issn 0144-8617
1879-1344
1879-1344
language eng
recordid cdi_cristin_nora_10037_20699
source MEDLINE; NORA - Norwegian Open Research Archives; Elsevier ScienceDirect Journals
subjects Animals
Basale medisinske, odontologiske og veterinærmedisinske fag: 710
Basic medical, dental and veterinary science disciplines: 710
Biocompatible Materials
Biofunctionalization
Cell Adhesion
Cell Line
Cell proliferation
Cell Survival
Farmakologi: 728
Humans
Hydrogels
Material blending
Medical disciplines: 700
Medisinske Fag: 700
Microbial polysaccharide hydrogel
Pharmacology: 728
Polysaccharides, Bacterial
Regenerative Medicine
Tissue Engineering
Tissue engineering and regenerative medicine (TERM)
VDP
title Biomimicry of microbial polysaccharide hydrogels for tissue engineering and regenerative medicine – A review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T12%3A02%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_crist&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomimicry%20of%20microbial%20polysaccharide%20hydrogels%20for%20tissue%20engineering%20and%20regenerative%20medicine%20%E2%80%93%20A%20review&rft.jtitle=Carbohydrate%20polymers&rft.au=Ng,%20Jian%20Yao&rft.date=2020-08-01&rft.volume=241&rft.spage=116345&rft.epage=116345&rft.pages=116345-116345&rft.artnum=116345&rft.issn=0144-8617&rft.eissn=1879-1344&rft_id=info:doi/10.1016/j.carbpol.2020.116345&rft_dat=%3Cproquest_crist%3E2410731459%3C/proquest_crist%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2410731459&rft_id=info:pmid/32507219&rft_els_id=S0144861720305191&rfr_iscdi=true