Biomimicry of microbial polysaccharide hydrogels for tissue engineering and regenerative medicine – A review
•Biomimicry of microbial polysaccharide hydrogels as TERM scaffolds is discussed.•Microbial polysaccharides form hydrogels easily but lack bioactivity.•Emphasis is placed on material blending with bioactive materials for bioactivity.•A list of organic and inorganic bioactive materials is curated in...
Gespeichert in:
Veröffentlicht in: | Carbohydrate polymers 2020-08, Vol.241, p.116345-116345, Article 116345 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 116345 |
---|---|
container_issue | |
container_start_page | 116345 |
container_title | Carbohydrate polymers |
container_volume | 241 |
creator | Ng, Jian Yao Obuobi, Sybil Chua, Mei Ling Zhang, Chi Hong, Shiqi Kumar, Yogesh Gokhale, Rajeev Ee, Pui Lai Rachel |
description | •Biomimicry of microbial polysaccharide hydrogels as TERM scaffolds is discussed.•Microbial polysaccharides form hydrogels easily but lack bioactivity.•Emphasis is placed on material blending with bioactive materials for bioactivity.•A list of organic and inorganic bioactive materials is curated in this review.
Hydrogels as artificial biomaterial scaffolds offer a much favoured 3D microenvironment for tissue engineering and regenerative medicine (TERM). Towards biomimicry of the native ECM, polysaccharides from Nature have been proposed as ideal surrogates given their biocompatibility. In particular, derivatives from microbial sources have emerged as economical and sustainable biomaterials due to their fast and high yielding production procedures. Despite these merits, microbial polysaccharides do not interact biologically with human tissues, a critical limitation hampering their translation into paradigmatic scaffolds for in vitro 3D cell culture. To overcome this, chemical and biological functionalization of polysaccharide scaffolds have been explored extensively. This review outlines the most recent strategies in the preparation of biofunctionalized gellan gum, xanthan gum and dextran hydrogels fabricated exclusively via material blending. Using inorganic or organic materials, we discuss the impact of these approaches on cell adhesion, proliferation and viability of anchorage-dependent cells for various TERM applications.’ |
doi_str_mv | 10.1016/j.carbpol.2020.116345 |
format | Article |
fullrecord | <record><control><sourceid>proquest_crist</sourceid><recordid>TN_cdi_cristin_nora_10037_20699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0144861720305191</els_id><sourcerecordid>2410731459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-448827ae4c378ce2bf1f8b081efe885a7a701cf5a3f8d7d1ffb213e6e67c1aee3</originalsourceid><addsrcrecordid>eNqFkc9uEzEQxi0EoqHwCICPXDZ4bO_aOaFSlT9SJS5wtrzecepo1w72pig33oE35EnqVVKuzMUjzzffSL-PkNfA1sCge79bO5v7fRrXnPH6B52Q7ROyAq02DQgpn5IVAykb3YG6IC9K2bFaHbDn5ELwlikOmxWJH0OawhRcPtLk6dKkPtiRVudjsc7d2RwGpHfHIactjoX6lOkcSjkgxbgNETGHuKU2DjTjFiNmO4d7pBMOwdUx_fv7D72qs_uAv16SZ96OBV-d30vy49PN9-svze23z1-vr24b1zI-N1JqzZVF6YTSDnnvweueaUCPWrdWWcXA-dYKrwc1gPc9B4EddsqBRRSX5O3J1-VQ5hBNTNkaYEwow1m32VTFu5Nin9PPA5bZTKE4HEcbMR2K4RKYEiDbRdo-mqVSMnqzz2Gy-VgNzRKG2ZlzGGYJw5zCqHtvzicOfaXxb-uRfhV8OAkq1wVPNsUFjK6Sy-hmM6TwnxMPyrefWg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2410731459</pqid></control><display><type>article</type><title>Biomimicry of microbial polysaccharide hydrogels for tissue engineering and regenerative medicine – A review</title><source>MEDLINE</source><source>NORA - Norwegian Open Research Archives</source><source>Elsevier ScienceDirect Journals</source><creator>Ng, Jian Yao ; Obuobi, Sybil ; Chua, Mei Ling ; Zhang, Chi ; Hong, Shiqi ; Kumar, Yogesh ; Gokhale, Rajeev ; Ee, Pui Lai Rachel</creator><creatorcontrib>Ng, Jian Yao ; Obuobi, Sybil ; Chua, Mei Ling ; Zhang, Chi ; Hong, Shiqi ; Kumar, Yogesh ; Gokhale, Rajeev ; Ee, Pui Lai Rachel</creatorcontrib><description>•Biomimicry of microbial polysaccharide hydrogels as TERM scaffolds is discussed.•Microbial polysaccharides form hydrogels easily but lack bioactivity.•Emphasis is placed on material blending with bioactive materials for bioactivity.•A list of organic and inorganic bioactive materials is curated in this review.
Hydrogels as artificial biomaterial scaffolds offer a much favoured 3D microenvironment for tissue engineering and regenerative medicine (TERM). Towards biomimicry of the native ECM, polysaccharides from Nature have been proposed as ideal surrogates given their biocompatibility. In particular, derivatives from microbial sources have emerged as economical and sustainable biomaterials due to their fast and high yielding production procedures. Despite these merits, microbial polysaccharides do not interact biologically with human tissues, a critical limitation hampering their translation into paradigmatic scaffolds for in vitro 3D cell culture. To overcome this, chemical and biological functionalization of polysaccharide scaffolds have been explored extensively. This review outlines the most recent strategies in the preparation of biofunctionalized gellan gum, xanthan gum and dextran hydrogels fabricated exclusively via material blending. Using inorganic or organic materials, we discuss the impact of these approaches on cell adhesion, proliferation and viability of anchorage-dependent cells for various TERM applications.’</description><identifier>ISSN: 0144-8617</identifier><identifier>ISSN: 1879-1344</identifier><identifier>EISSN: 1879-1344</identifier><identifier>DOI: 10.1016/j.carbpol.2020.116345</identifier><identifier>PMID: 32507219</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Basale medisinske, odontologiske og veterinærmedisinske fag: 710 ; Basic medical, dental and veterinary science disciplines: 710 ; Biocompatible Materials ; Biofunctionalization ; Cell Adhesion ; Cell Line ; Cell proliferation ; Cell Survival ; Farmakologi: 728 ; Humans ; Hydrogels ; Material blending ; Medical disciplines: 700 ; Medisinske Fag: 700 ; Microbial polysaccharide hydrogel ; Pharmacology: 728 ; Polysaccharides, Bacterial ; Regenerative Medicine ; Tissue Engineering ; Tissue engineering and regenerative medicine (TERM) ; VDP</subject><ispartof>Carbohydrate polymers, 2020-08, Vol.241, p.116345-116345, Article 116345</ispartof><rights>2020 The Author(s)</rights><rights>Copyright © 2020 The Author(s). Published by Elsevier Ltd.. All rights reserved.</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-448827ae4c378ce2bf1f8b081efe885a7a701cf5a3f8d7d1ffb213e6e67c1aee3</citedby><cites>FETCH-LOGICAL-c502t-448827ae4c378ce2bf1f8b081efe885a7a701cf5a3f8d7d1ffb213e6e67c1aee3</cites><orcidid>0000-0002-7277-6233</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0144861720305191$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,26544,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32507219$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ng, Jian Yao</creatorcontrib><creatorcontrib>Obuobi, Sybil</creatorcontrib><creatorcontrib>Chua, Mei Ling</creatorcontrib><creatorcontrib>Zhang, Chi</creatorcontrib><creatorcontrib>Hong, Shiqi</creatorcontrib><creatorcontrib>Kumar, Yogesh</creatorcontrib><creatorcontrib>Gokhale, Rajeev</creatorcontrib><creatorcontrib>Ee, Pui Lai Rachel</creatorcontrib><title>Biomimicry of microbial polysaccharide hydrogels for tissue engineering and regenerative medicine – A review</title><title>Carbohydrate polymers</title><addtitle>Carbohydr Polym</addtitle><description>•Biomimicry of microbial polysaccharide hydrogels as TERM scaffolds is discussed.•Microbial polysaccharides form hydrogels easily but lack bioactivity.•Emphasis is placed on material blending with bioactive materials for bioactivity.•A list of organic and inorganic bioactive materials is curated in this review.
Hydrogels as artificial biomaterial scaffolds offer a much favoured 3D microenvironment for tissue engineering and regenerative medicine (TERM). Towards biomimicry of the native ECM, polysaccharides from Nature have been proposed as ideal surrogates given their biocompatibility. In particular, derivatives from microbial sources have emerged as economical and sustainable biomaterials due to their fast and high yielding production procedures. Despite these merits, microbial polysaccharides do not interact biologically with human tissues, a critical limitation hampering their translation into paradigmatic scaffolds for in vitro 3D cell culture. To overcome this, chemical and biological functionalization of polysaccharide scaffolds have been explored extensively. This review outlines the most recent strategies in the preparation of biofunctionalized gellan gum, xanthan gum and dextran hydrogels fabricated exclusively via material blending. Using inorganic or organic materials, we discuss the impact of these approaches on cell adhesion, proliferation and viability of anchorage-dependent cells for various TERM applications.’</description><subject>Animals</subject><subject>Basale medisinske, odontologiske og veterinærmedisinske fag: 710</subject><subject>Basic medical, dental and veterinary science disciplines: 710</subject><subject>Biocompatible Materials</subject><subject>Biofunctionalization</subject><subject>Cell Adhesion</subject><subject>Cell Line</subject><subject>Cell proliferation</subject><subject>Cell Survival</subject><subject>Farmakologi: 728</subject><subject>Humans</subject><subject>Hydrogels</subject><subject>Material blending</subject><subject>Medical disciplines: 700</subject><subject>Medisinske Fag: 700</subject><subject>Microbial polysaccharide hydrogel</subject><subject>Pharmacology: 728</subject><subject>Polysaccharides, Bacterial</subject><subject>Regenerative Medicine</subject><subject>Tissue Engineering</subject><subject>Tissue engineering and regenerative medicine (TERM)</subject><subject>VDP</subject><issn>0144-8617</issn><issn>1879-1344</issn><issn>1879-1344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>3HK</sourceid><recordid>eNqFkc9uEzEQxi0EoqHwCICPXDZ4bO_aOaFSlT9SJS5wtrzecepo1w72pig33oE35EnqVVKuzMUjzzffSL-PkNfA1sCge79bO5v7fRrXnPH6B52Q7ROyAq02DQgpn5IVAykb3YG6IC9K2bFaHbDn5ELwlikOmxWJH0OawhRcPtLk6dKkPtiRVudjsc7d2RwGpHfHIactjoX6lOkcSjkgxbgNETGHuKU2DjTjFiNmO4d7pBMOwdUx_fv7D72qs_uAv16SZ96OBV-d30vy49PN9-svze23z1-vr24b1zI-N1JqzZVF6YTSDnnvweueaUCPWrdWWcXA-dYKrwc1gPc9B4EddsqBRRSX5O3J1-VQ5hBNTNkaYEwow1m32VTFu5Nin9PPA5bZTKE4HEcbMR2K4RKYEiDbRdo-mqVSMnqzz2Gy-VgNzRKG2ZlzGGYJw5zCqHtvzicOfaXxb-uRfhV8OAkq1wVPNsUFjK6Sy-hmM6TwnxMPyrefWg</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Ng, Jian Yao</creator><creator>Obuobi, Sybil</creator><creator>Chua, Mei Ling</creator><creator>Zhang, Chi</creator><creator>Hong, Shiqi</creator><creator>Kumar, Yogesh</creator><creator>Gokhale, Rajeev</creator><creator>Ee, Pui Lai Rachel</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>3HK</scope><orcidid>https://orcid.org/0000-0002-7277-6233</orcidid></search><sort><creationdate>20200801</creationdate><title>Biomimicry of microbial polysaccharide hydrogels for tissue engineering and regenerative medicine – A review</title><author>Ng, Jian Yao ; Obuobi, Sybil ; Chua, Mei Ling ; Zhang, Chi ; Hong, Shiqi ; Kumar, Yogesh ; Gokhale, Rajeev ; Ee, Pui Lai Rachel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-448827ae4c378ce2bf1f8b081efe885a7a701cf5a3f8d7d1ffb213e6e67c1aee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Basale medisinske, odontologiske og veterinærmedisinske fag: 710</topic><topic>Basic medical, dental and veterinary science disciplines: 710</topic><topic>Biocompatible Materials</topic><topic>Biofunctionalization</topic><topic>Cell Adhesion</topic><topic>Cell Line</topic><topic>Cell proliferation</topic><topic>Cell Survival</topic><topic>Farmakologi: 728</topic><topic>Humans</topic><topic>Hydrogels</topic><topic>Material blending</topic><topic>Medical disciplines: 700</topic><topic>Medisinske Fag: 700</topic><topic>Microbial polysaccharide hydrogel</topic><topic>Pharmacology: 728</topic><topic>Polysaccharides, Bacterial</topic><topic>Regenerative Medicine</topic><topic>Tissue Engineering</topic><topic>Tissue engineering and regenerative medicine (TERM)</topic><topic>VDP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ng, Jian Yao</creatorcontrib><creatorcontrib>Obuobi, Sybil</creatorcontrib><creatorcontrib>Chua, Mei Ling</creatorcontrib><creatorcontrib>Zhang, Chi</creatorcontrib><creatorcontrib>Hong, Shiqi</creatorcontrib><creatorcontrib>Kumar, Yogesh</creatorcontrib><creatorcontrib>Gokhale, Rajeev</creatorcontrib><creatorcontrib>Ee, Pui Lai Rachel</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>NORA - Norwegian Open Research Archives</collection><jtitle>Carbohydrate polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ng, Jian Yao</au><au>Obuobi, Sybil</au><au>Chua, Mei Ling</au><au>Zhang, Chi</au><au>Hong, Shiqi</au><au>Kumar, Yogesh</au><au>Gokhale, Rajeev</au><au>Ee, Pui Lai Rachel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomimicry of microbial polysaccharide hydrogels for tissue engineering and regenerative medicine – A review</atitle><jtitle>Carbohydrate polymers</jtitle><addtitle>Carbohydr Polym</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>241</volume><spage>116345</spage><epage>116345</epage><pages>116345-116345</pages><artnum>116345</artnum><issn>0144-8617</issn><issn>1879-1344</issn><eissn>1879-1344</eissn><abstract>•Biomimicry of microbial polysaccharide hydrogels as TERM scaffolds is discussed.•Microbial polysaccharides form hydrogels easily but lack bioactivity.•Emphasis is placed on material blending with bioactive materials for bioactivity.•A list of organic and inorganic bioactive materials is curated in this review.
Hydrogels as artificial biomaterial scaffolds offer a much favoured 3D microenvironment for tissue engineering and regenerative medicine (TERM). Towards biomimicry of the native ECM, polysaccharides from Nature have been proposed as ideal surrogates given their biocompatibility. In particular, derivatives from microbial sources have emerged as economical and sustainable biomaterials due to their fast and high yielding production procedures. Despite these merits, microbial polysaccharides do not interact biologically with human tissues, a critical limitation hampering their translation into paradigmatic scaffolds for in vitro 3D cell culture. To overcome this, chemical and biological functionalization of polysaccharide scaffolds have been explored extensively. This review outlines the most recent strategies in the preparation of biofunctionalized gellan gum, xanthan gum and dextran hydrogels fabricated exclusively via material blending. Using inorganic or organic materials, we discuss the impact of these approaches on cell adhesion, proliferation and viability of anchorage-dependent cells for various TERM applications.’</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>32507219</pmid><doi>10.1016/j.carbpol.2020.116345</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7277-6233</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0144-8617 |
ispartof | Carbohydrate polymers, 2020-08, Vol.241, p.116345-116345, Article 116345 |
issn | 0144-8617 1879-1344 1879-1344 |
language | eng |
recordid | cdi_cristin_nora_10037_20699 |
source | MEDLINE; NORA - Norwegian Open Research Archives; Elsevier ScienceDirect Journals |
subjects | Animals Basale medisinske, odontologiske og veterinærmedisinske fag: 710 Basic medical, dental and veterinary science disciplines: 710 Biocompatible Materials Biofunctionalization Cell Adhesion Cell Line Cell proliferation Cell Survival Farmakologi: 728 Humans Hydrogels Material blending Medical disciplines: 700 Medisinske Fag: 700 Microbial polysaccharide hydrogel Pharmacology: 728 Polysaccharides, Bacterial Regenerative Medicine Tissue Engineering Tissue engineering and regenerative medicine (TERM) VDP |
title | Biomimicry of microbial polysaccharide hydrogels for tissue engineering and regenerative medicine – A review |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T12%3A02%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_crist&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomimicry%20of%20microbial%20polysaccharide%20hydrogels%20for%20tissue%20engineering%20and%20regenerative%20medicine%20%E2%80%93%20A%20review&rft.jtitle=Carbohydrate%20polymers&rft.au=Ng,%20Jian%20Yao&rft.date=2020-08-01&rft.volume=241&rft.spage=116345&rft.epage=116345&rft.pages=116345-116345&rft.artnum=116345&rft.issn=0144-8617&rft.eissn=1879-1344&rft_id=info:doi/10.1016/j.carbpol.2020.116345&rft_dat=%3Cproquest_crist%3E2410731459%3C/proquest_crist%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2410731459&rft_id=info:pmid/32507219&rft_els_id=S0144861720305191&rfr_iscdi=true |