The categorical theory of relations and quantization

In this paper we develops a categorical theory of relations and use this formulation to define the notion of quantization for relations. Categories of relations are defined in the context of symmetric monoidal categories. They are shown to be symmetric monoidal categories in their own right and are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lychagin, Valentin V, Jakobsen, Per K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Lychagin, Valentin V
Jakobsen, Per K
description In this paper we develops a categorical theory of relations and use this formulation to define the notion of quantization for relations. Categories of relations are defined in the context of symmetric monoidal categories. They are shown to be symmetric monoidal categories in their own right and are found to be isomorphic to certain categories of A−A bicomodules. Properties of relations are defined in terms of the symmetric monoidal structure. Equivalence relations are shown to be commutative monoids in the category of relations. Quantization in our view is a property of functors between monoidal categories. This notion of quantization induce a deformation of all algebraic structures in the category, in particular the ones defining properties of relations like transitivity and symmetry.
format Article
fullrecord <record><control><sourceid>cristin_3HK</sourceid><recordid>TN_cdi_cristin_nora_10037_2057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10037_2057</sourcerecordid><originalsourceid>FETCH-cristin_nora_10037_20573</originalsourceid><addsrcrecordid>eNrjZDAJyUhVSE4sSU3PL8pMTsxRKMlIzS-qVMhPUyhKzUksyczPK1ZIzEtRKCxNzCvJrAKL8DCwpiXmFKfyQmluBjk31xBnD93kosziksy8-Lz8osR4QwMDY_N4IwNTc2OCCgA-oCt7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The categorical theory of relations and quantization</title><source>NORA - Norwegian Open Research Archives</source><creator>Lychagin, Valentin V ; Jakobsen, Per K</creator><creatorcontrib>Lychagin, Valentin V ; Jakobsen, Per K</creatorcontrib><description>In this paper we develops a categorical theory of relations and use this formulation to define the notion of quantization for relations. Categories of relations are defined in the context of symmetric monoidal categories. They are shown to be symmetric monoidal categories in their own right and are found to be isomorphic to certain categories of A−A bicomodules. Properties of relations are defined in terms of the symmetric monoidal structure. Equivalence relations are shown to be commutative monoids in the category of relations. Quantization in our view is a property of functors between monoidal categories. This notion of quantization induce a deformation of all algebraic structures in the category, in particular the ones defining properties of relations like transitivity and symmetry.</description><language>eng</language><subject>Algebra/algebraic analysis: 414 ; Mathematics and natural science: 400 ; Mathematics: 410 ; VDP</subject><creationdate>2001</creationdate><rights>info:eu-repo/semantics/openAccess</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,776,881,26544</link.rule.ids><linktorsrc>$$Uhttp://hdl.handle.net/10037/2057$$EView_record_in_NORA$$FView_record_in_$$GNORA$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Lychagin, Valentin V</creatorcontrib><creatorcontrib>Jakobsen, Per K</creatorcontrib><title>The categorical theory of relations and quantization</title><description>In this paper we develops a categorical theory of relations and use this formulation to define the notion of quantization for relations. Categories of relations are defined in the context of symmetric monoidal categories. They are shown to be symmetric monoidal categories in their own right and are found to be isomorphic to certain categories of A−A bicomodules. Properties of relations are defined in terms of the symmetric monoidal structure. Equivalence relations are shown to be commutative monoids in the category of relations. Quantization in our view is a property of functors between monoidal categories. This notion of quantization induce a deformation of all algebraic structures in the category, in particular the ones defining properties of relations like transitivity and symmetry.</description><subject>Algebra/algebraic analysis: 414</subject><subject>Mathematics and natural science: 400</subject><subject>Mathematics: 410</subject><subject>VDP</subject><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNrjZDAJyUhVSE4sSU3PL8pMTsxRKMlIzS-qVMhPUyhKzUksyczPK1ZIzEtRKCxNzCvJrAKL8DCwpiXmFKfyQmluBjk31xBnD93kosziksy8-Lz8osR4QwMDY_N4IwNTc2OCCgA-oCt7</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Lychagin, Valentin V</creator><creator>Jakobsen, Per K</creator><scope>3HK</scope></search><sort><creationdate>2001</creationdate><title>The categorical theory of relations and quantization</title><author>Lychagin, Valentin V ; Jakobsen, Per K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-cristin_nora_10037_20573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Algebra/algebraic analysis: 414</topic><topic>Mathematics and natural science: 400</topic><topic>Mathematics: 410</topic><topic>VDP</topic><toplevel>online_resources</toplevel><creatorcontrib>Lychagin, Valentin V</creatorcontrib><creatorcontrib>Jakobsen, Per K</creatorcontrib><collection>NORA - Norwegian Open Research Archives</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lychagin, Valentin V</au><au>Jakobsen, Per K</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The categorical theory of relations and quantization</atitle><date>2001</date><risdate>2001</risdate><abstract>In this paper we develops a categorical theory of relations and use this formulation to define the notion of quantization for relations. Categories of relations are defined in the context of symmetric monoidal categories. They are shown to be symmetric monoidal categories in their own right and are found to be isomorphic to certain categories of A−A bicomodules. Properties of relations are defined in terms of the symmetric monoidal structure. Equivalence relations are shown to be commutative monoids in the category of relations. Quantization in our view is a property of functors between monoidal categories. This notion of quantization induce a deformation of all algebraic structures in the category, in particular the ones defining properties of relations like transitivity and symmetry.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_cristin_nora_10037_2057
source NORA - Norwegian Open Research Archives
subjects Algebra/algebraic analysis: 414
Mathematics and natural science: 400
Mathematics: 410
VDP
title The categorical theory of relations and quantization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T03%3A25%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cristin_3HK&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20categorical%20theory%20of%20relations%20and%20quantization&rft.au=Lychagin,%20Valentin%20V&rft.date=2001&rft_id=info:doi/&rft_dat=%3Ccristin_3HK%3E10037_2057%3C/cristin_3HK%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true