Identifying global vs. basinal controls on Paleoproterozoic organic carbon and sulfur isotope records

Paleoproterozoic sedimentary successions are important archives of the redox evolution of Earth’s atmosphere and oceans. Efforts to unravel the dynamics of our planet’s early oxygenation from this archive rely on various geochemical proxies, including stable carbon and sulfur isotopes. However, anci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Earth-science reviews 2020-08, Vol.207, p.103230, Article 103230
Hauptverfasser: Paiste, K., Lepland, A., Zerkle, A.L., Kirsimäe, K., Kreitsmann, T., Mänd, K., Romashkin, A.E., Rychanchik, D.V., Prave, A.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 103230
container_title Earth-science reviews
container_volume 207
creator Paiste, K.
Lepland, A.
Zerkle, A.L.
Kirsimäe, K.
Kreitsmann, T.
Mänd, K.
Romashkin, A.E.
Rychanchik, D.V.
Prave, A.R.
description Paleoproterozoic sedimentary successions are important archives of the redox evolution of Earth’s atmosphere and oceans. Efforts to unravel the dynamics of our planet’s early oxygenation from this archive rely on various geochemical proxies, including stable carbon and sulfur isotopes. However, ancient metasedimentary rocks often experienced early- and late-stage (bio)geochemical processes making it difficult to discern primary environmental signals from bulk-rock δ13Corg and δ34S values. Such complexity in carbon and sulfur isotope systematics contributes to uncertainty about the redox structure of Paleoproterozoic oceans. A currently popular idea is that, following the Great Oxidation Event, global changes led to low-oxygen environments and temporally fluctuating ocean redox conditions that lasted until the Neoproterozoic. The volcano-sedimentary rocks of the Onega Basin have figured prominently in this concept, particularly the exceptionally organic-rich rocks of the 1.98 Ga Zaonega Formation. However, a growing body of evidence shows that local depositional processes acted to form the δ13Corg and pyrite δ34S records of the Zaonega Formation, thus calling for careful assessment of the global significance of these isotope records. Placing new and existing organic carbon and sulfur isotope data from the Zaonega Formation into the context of basin history and by comparing those results with key Paleoproterozoic successions of the Francevillian Basin (Gabon), the Pechenga Greenstone Belt (NW Russia) and the Animikie Basin (Canada), we show that the stratigraphic δ13Corg and pyrite δ34S trends can be explained by local perturbations in biogeochemical carbon and sulfur cycling without requiring global drivers. Despite their temporal disparity, we also demonstrate that individual successions share certain geological traits (e.g. magmatic and/or tectonic activity, hydrocarbon generation, basin restriction) suggesting that their pyrite δ34S and δ13Corg trends were governed by common underlying mechanisms (e.g. similar basinal evolution and biogeochemical feedbacks) and are not necessarily unique to certain time intervals. We further show that pyrites in these successions that are most likely to capture ambient seawater sulfate isotopic composition have consistent δ34S values of 15–18‰, which hints at remarkable stability in the marine sulfur cycle over most of the Paleoproterozoic Era.
doi_str_mv 10.1016/j.earscirev.2020.103230
format Article
fullrecord <record><control><sourceid>elsevier_crist</sourceid><recordid>TN_cdi_cristin_nora_10037_18557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012825220302762</els_id><sourcerecordid>S0012825220302762</sourcerecordid><originalsourceid>FETCH-LOGICAL-a411t-210ee788f3433ff7ef20c461b6da7f6bf11c9111bd829500cfce7679c9c036f3</originalsourceid><addsrcrecordid>eNqNkMFqGzEQhkVoIW7aZ4juZR2N1rvSHoNJm0CgPfgutNqRkdlqjCQ7JE8fGSe5pqeZ0Xy_GD7GrkEsQUB_s1uiTdmFhMelFPL02spWXLAFaCWbXkv9hS2EANlo2clL9i3nnaizGNSC4cOEsQT_HOKWb2ca7cyPeclHm0OsvaNYEs2ZU-R_7Yy0T1Qw0QsFxyltbazV2TTWvY0Tz4fZHxIPmQrtkSd0lKb8nX31ds74461esc2vu836vnn88_thffvY2BVAaSQIRKW1b1dt671CL4Vb9TD2k1W-Hz2AGwBgnLQcOiGcd6h6NbjBibb37RW7Pn_rUsglRBMpWQNCtMqA7jpVCfVOUM4Jvdmn8M-m50qZk06zMx86zUmnOeusyZ_n5BOO5CuA0eFHuvrsul4Pg6qdhErr_6fXodgSKK7pEEuN3p6jWEUdAybzFp_qTa6YicKnx74Cc4OkNA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Identifying global vs. basinal controls on Paleoproterozoic organic carbon and sulfur isotope records</title><source>NORA - Norwegian Open Research Archives</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Access via ScienceDirect (Elsevier)</source><creator>Paiste, K. ; Lepland, A. ; Zerkle, A.L. ; Kirsimäe, K. ; Kreitsmann, T. ; Mänd, K. ; Romashkin, A.E. ; Rychanchik, D.V. ; Prave, A.R.</creator><creatorcontrib>Paiste, K. ; Lepland, A. ; Zerkle, A.L. ; Kirsimäe, K. ; Kreitsmann, T. ; Mänd, K. ; Romashkin, A.E. ; Rychanchik, D.V. ; Prave, A.R.</creatorcontrib><description>Paleoproterozoic sedimentary successions are important archives of the redox evolution of Earth’s atmosphere and oceans. Efforts to unravel the dynamics of our planet’s early oxygenation from this archive rely on various geochemical proxies, including stable carbon and sulfur isotopes. However, ancient metasedimentary rocks often experienced early- and late-stage (bio)geochemical processes making it difficult to discern primary environmental signals from bulk-rock δ13Corg and δ34S values. Such complexity in carbon and sulfur isotope systematics contributes to uncertainty about the redox structure of Paleoproterozoic oceans. A currently popular idea is that, following the Great Oxidation Event, global changes led to low-oxygen environments and temporally fluctuating ocean redox conditions that lasted until the Neoproterozoic. The volcano-sedimentary rocks of the Onega Basin have figured prominently in this concept, particularly the exceptionally organic-rich rocks of the 1.98 Ga Zaonega Formation. However, a growing body of evidence shows that local depositional processes acted to form the δ13Corg and pyrite δ34S records of the Zaonega Formation, thus calling for careful assessment of the global significance of these isotope records. Placing new and existing organic carbon and sulfur isotope data from the Zaonega Formation into the context of basin history and by comparing those results with key Paleoproterozoic successions of the Francevillian Basin (Gabon), the Pechenga Greenstone Belt (NW Russia) and the Animikie Basin (Canada), we show that the stratigraphic δ13Corg and pyrite δ34S trends can be explained by local perturbations in biogeochemical carbon and sulfur cycling without requiring global drivers. Despite their temporal disparity, we also demonstrate that individual successions share certain geological traits (e.g. magmatic and/or tectonic activity, hydrocarbon generation, basin restriction) suggesting that their pyrite δ34S and δ13Corg trends were governed by common underlying mechanisms (e.g. similar basinal evolution and biogeochemical feedbacks) and are not necessarily unique to certain time intervals. We further show that pyrites in these successions that are most likely to capture ambient seawater sulfate isotopic composition have consistent δ34S values of 15–18‰, which hints at remarkable stability in the marine sulfur cycle over most of the Paleoproterozoic Era.</description><identifier>ISSN: 0012-8252</identifier><identifier>ISSN: 1872-6828</identifier><identifier>EISSN: 1872-6828</identifier><identifier>DOI: 10.1016/j.earscirev.2020.103230</identifier><language>eng</language><publisher>AMSTERDAM: Elsevier B.V</publisher><subject>Carbon cycle ; Geofag: 450 ; Geology ; Geosciences, Multidisciplinary ; Geosciences: 450 ; Great Oxidation Event ; Matematikk og Naturvitenskap: 400 ; Mathematics and natural science: 400 ; Ocean redox ; Onega Basin ; Paleoproterozoic ; Physical Sciences ; Science &amp; Technology ; Sulfur cycle ; VDP</subject><ispartof>Earth-science reviews, 2020-08, Vol.207, p.103230, Article 103230</ispartof><rights>2020 Elsevier B.V.</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>12</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000556899700021</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a411t-210ee788f3433ff7ef20c461b6da7f6bf11c9111bd829500cfce7679c9c036f3</citedby><cites>FETCH-LOGICAL-a411t-210ee788f3433ff7ef20c461b6da7f6bf11c9111bd829500cfce7679c9c036f3</cites><orcidid>0000-0002-0997-8860 ; 0000-0002-0248-1405 ; 0000-0001-8516-3535</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.earscirev.2020.103230$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,782,786,887,3554,26576,27933,27934,28257,46004</link.rule.ids></links><search><creatorcontrib>Paiste, K.</creatorcontrib><creatorcontrib>Lepland, A.</creatorcontrib><creatorcontrib>Zerkle, A.L.</creatorcontrib><creatorcontrib>Kirsimäe, K.</creatorcontrib><creatorcontrib>Kreitsmann, T.</creatorcontrib><creatorcontrib>Mänd, K.</creatorcontrib><creatorcontrib>Romashkin, A.E.</creatorcontrib><creatorcontrib>Rychanchik, D.V.</creatorcontrib><creatorcontrib>Prave, A.R.</creatorcontrib><title>Identifying global vs. basinal controls on Paleoproterozoic organic carbon and sulfur isotope records</title><title>Earth-science reviews</title><addtitle>EARTH-SCI REV</addtitle><description>Paleoproterozoic sedimentary successions are important archives of the redox evolution of Earth’s atmosphere and oceans. Efforts to unravel the dynamics of our planet’s early oxygenation from this archive rely on various geochemical proxies, including stable carbon and sulfur isotopes. However, ancient metasedimentary rocks often experienced early- and late-stage (bio)geochemical processes making it difficult to discern primary environmental signals from bulk-rock δ13Corg and δ34S values. Such complexity in carbon and sulfur isotope systematics contributes to uncertainty about the redox structure of Paleoproterozoic oceans. A currently popular idea is that, following the Great Oxidation Event, global changes led to low-oxygen environments and temporally fluctuating ocean redox conditions that lasted until the Neoproterozoic. The volcano-sedimentary rocks of the Onega Basin have figured prominently in this concept, particularly the exceptionally organic-rich rocks of the 1.98 Ga Zaonega Formation. However, a growing body of evidence shows that local depositional processes acted to form the δ13Corg and pyrite δ34S records of the Zaonega Formation, thus calling for careful assessment of the global significance of these isotope records. Placing new and existing organic carbon and sulfur isotope data from the Zaonega Formation into the context of basin history and by comparing those results with key Paleoproterozoic successions of the Francevillian Basin (Gabon), the Pechenga Greenstone Belt (NW Russia) and the Animikie Basin (Canada), we show that the stratigraphic δ13Corg and pyrite δ34S trends can be explained by local perturbations in biogeochemical carbon and sulfur cycling without requiring global drivers. Despite their temporal disparity, we also demonstrate that individual successions share certain geological traits (e.g. magmatic and/or tectonic activity, hydrocarbon generation, basin restriction) suggesting that their pyrite δ34S and δ13Corg trends were governed by common underlying mechanisms (e.g. similar basinal evolution and biogeochemical feedbacks) and are not necessarily unique to certain time intervals. We further show that pyrites in these successions that are most likely to capture ambient seawater sulfate isotopic composition have consistent δ34S values of 15–18‰, which hints at remarkable stability in the marine sulfur cycle over most of the Paleoproterozoic Era.</description><subject>Carbon cycle</subject><subject>Geofag: 450</subject><subject>Geology</subject><subject>Geosciences, Multidisciplinary</subject><subject>Geosciences: 450</subject><subject>Great Oxidation Event</subject><subject>Matematikk og Naturvitenskap: 400</subject><subject>Mathematics and natural science: 400</subject><subject>Ocean redox</subject><subject>Onega Basin</subject><subject>Paleoproterozoic</subject><subject>Physical Sciences</subject><subject>Science &amp; Technology</subject><subject>Sulfur cycle</subject><subject>VDP</subject><issn>0012-8252</issn><issn>1872-6828</issn><issn>1872-6828</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>3HK</sourceid><recordid>eNqNkMFqGzEQhkVoIW7aZ4juZR2N1rvSHoNJm0CgPfgutNqRkdlqjCQ7JE8fGSe5pqeZ0Xy_GD7GrkEsQUB_s1uiTdmFhMelFPL02spWXLAFaCWbXkv9hS2EANlo2clL9i3nnaizGNSC4cOEsQT_HOKWb2ca7cyPeclHm0OsvaNYEs2ZU-R_7Yy0T1Qw0QsFxyltbazV2TTWvY0Tz4fZHxIPmQrtkSd0lKb8nX31ds74461esc2vu836vnn88_thffvY2BVAaSQIRKW1b1dt671CL4Vb9TD2k1W-Hz2AGwBgnLQcOiGcd6h6NbjBibb37RW7Pn_rUsglRBMpWQNCtMqA7jpVCfVOUM4Jvdmn8M-m50qZk06zMx86zUmnOeusyZ_n5BOO5CuA0eFHuvrsul4Pg6qdhErr_6fXodgSKK7pEEuN3p6jWEUdAybzFp_qTa6YicKnx74Cc4OkNA</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Paiste, K.</creator><creator>Lepland, A.</creator><creator>Zerkle, A.L.</creator><creator>Kirsimäe, K.</creator><creator>Kreitsmann, T.</creator><creator>Mänd, K.</creator><creator>Romashkin, A.E.</creator><creator>Rychanchik, D.V.</creator><creator>Prave, A.R.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3HK</scope><orcidid>https://orcid.org/0000-0002-0997-8860</orcidid><orcidid>https://orcid.org/0000-0002-0248-1405</orcidid><orcidid>https://orcid.org/0000-0001-8516-3535</orcidid></search><sort><creationdate>20200801</creationdate><title>Identifying global vs. basinal controls on Paleoproterozoic organic carbon and sulfur isotope records</title><author>Paiste, K. ; Lepland, A. ; Zerkle, A.L. ; Kirsimäe, K. ; Kreitsmann, T. ; Mänd, K. ; Romashkin, A.E. ; Rychanchik, D.V. ; Prave, A.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a411t-210ee788f3433ff7ef20c461b6da7f6bf11c9111bd829500cfce7679c9c036f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carbon cycle</topic><topic>Geofag: 450</topic><topic>Geology</topic><topic>Geosciences, Multidisciplinary</topic><topic>Geosciences: 450</topic><topic>Great Oxidation Event</topic><topic>Matematikk og Naturvitenskap: 400</topic><topic>Mathematics and natural science: 400</topic><topic>Ocean redox</topic><topic>Onega Basin</topic><topic>Paleoproterozoic</topic><topic>Physical Sciences</topic><topic>Science &amp; Technology</topic><topic>Sulfur cycle</topic><topic>VDP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paiste, K.</creatorcontrib><creatorcontrib>Lepland, A.</creatorcontrib><creatorcontrib>Zerkle, A.L.</creatorcontrib><creatorcontrib>Kirsimäe, K.</creatorcontrib><creatorcontrib>Kreitsmann, T.</creatorcontrib><creatorcontrib>Mänd, K.</creatorcontrib><creatorcontrib>Romashkin, A.E.</creatorcontrib><creatorcontrib>Rychanchik, D.V.</creatorcontrib><creatorcontrib>Prave, A.R.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>NORA - Norwegian Open Research Archives</collection><jtitle>Earth-science reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paiste, K.</au><au>Lepland, A.</au><au>Zerkle, A.L.</au><au>Kirsimäe, K.</au><au>Kreitsmann, T.</au><au>Mänd, K.</au><au>Romashkin, A.E.</au><au>Rychanchik, D.V.</au><au>Prave, A.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying global vs. basinal controls on Paleoproterozoic organic carbon and sulfur isotope records</atitle><jtitle>Earth-science reviews</jtitle><stitle>EARTH-SCI REV</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>207</volume><spage>103230</spage><pages>103230-</pages><artnum>103230</artnum><issn>0012-8252</issn><issn>1872-6828</issn><eissn>1872-6828</eissn><abstract>Paleoproterozoic sedimentary successions are important archives of the redox evolution of Earth’s atmosphere and oceans. Efforts to unravel the dynamics of our planet’s early oxygenation from this archive rely on various geochemical proxies, including stable carbon and sulfur isotopes. However, ancient metasedimentary rocks often experienced early- and late-stage (bio)geochemical processes making it difficult to discern primary environmental signals from bulk-rock δ13Corg and δ34S values. Such complexity in carbon and sulfur isotope systematics contributes to uncertainty about the redox structure of Paleoproterozoic oceans. A currently popular idea is that, following the Great Oxidation Event, global changes led to low-oxygen environments and temporally fluctuating ocean redox conditions that lasted until the Neoproterozoic. The volcano-sedimentary rocks of the Onega Basin have figured prominently in this concept, particularly the exceptionally organic-rich rocks of the 1.98 Ga Zaonega Formation. However, a growing body of evidence shows that local depositional processes acted to form the δ13Corg and pyrite δ34S records of the Zaonega Formation, thus calling for careful assessment of the global significance of these isotope records. Placing new and existing organic carbon and sulfur isotope data from the Zaonega Formation into the context of basin history and by comparing those results with key Paleoproterozoic successions of the Francevillian Basin (Gabon), the Pechenga Greenstone Belt (NW Russia) and the Animikie Basin (Canada), we show that the stratigraphic δ13Corg and pyrite δ34S trends can be explained by local perturbations in biogeochemical carbon and sulfur cycling without requiring global drivers. Despite their temporal disparity, we also demonstrate that individual successions share certain geological traits (e.g. magmatic and/or tectonic activity, hydrocarbon generation, basin restriction) suggesting that their pyrite δ34S and δ13Corg trends were governed by common underlying mechanisms (e.g. similar basinal evolution and biogeochemical feedbacks) and are not necessarily unique to certain time intervals. We further show that pyrites in these successions that are most likely to capture ambient seawater sulfate isotopic composition have consistent δ34S values of 15–18‰, which hints at remarkable stability in the marine sulfur cycle over most of the Paleoproterozoic Era.</abstract><cop>AMSTERDAM</cop><pub>Elsevier B.V</pub><doi>10.1016/j.earscirev.2020.103230</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-0997-8860</orcidid><orcidid>https://orcid.org/0000-0002-0248-1405</orcidid><orcidid>https://orcid.org/0000-0001-8516-3535</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-8252
ispartof Earth-science reviews, 2020-08, Vol.207, p.103230, Article 103230
issn 0012-8252
1872-6828
1872-6828
language eng
recordid cdi_cristin_nora_10037_18557
source NORA - Norwegian Open Research Archives; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via ScienceDirect (Elsevier)
subjects Carbon cycle
Geofag: 450
Geology
Geosciences, Multidisciplinary
Geosciences: 450
Great Oxidation Event
Matematikk og Naturvitenskap: 400
Mathematics and natural science: 400
Ocean redox
Onega Basin
Paleoproterozoic
Physical Sciences
Science & Technology
Sulfur cycle
VDP
title Identifying global vs. basinal controls on Paleoproterozoic organic carbon and sulfur isotope records
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T19%3A52%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_crist&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20global%20vs.%20basinal%20controls%20on%20Paleoproterozoic%20organic%20carbon%20and%20sulfur%20isotope%20records&rft.jtitle=Earth-science%20reviews&rft.au=Paiste,%20K.&rft.date=2020-08-01&rft.volume=207&rft.spage=103230&rft.pages=103230-&rft.artnum=103230&rft.issn=0012-8252&rft.eissn=1872-6828&rft_id=info:doi/10.1016/j.earscirev.2020.103230&rft_dat=%3Celsevier_crist%3ES0012825220302762%3C/elsevier_crist%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0012825220302762&rfr_iscdi=true