Four-component relativistic 31P NMR calculations for trans-platinum(ii) complexes: importance of the solvent and dynamics in spectral simulations

We report a combined experimental–theoretical study on the 31P NMR chemical shift for a number of trans-platinum(ii) complexes. Validity and reliability of the 31P NMR chemical shift calculations are examined by comparing with the experimental data. A successful computational protocol for the accura...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dalton transactions : an international journal of inorganic chemistry 2019-01, Vol.48 (23), p.8076-8083
Hauptverfasser: Castro, Abril C, Fliegl, Heike, Cascella, Michele, Helgaker, Trygve, Repisky, Michal, Komorovsky, Stanislav, María Ángeles Medrano, Quiroga, Adoración G, Swart, Marcel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8083
container_issue 23
container_start_page 8076
container_title Dalton transactions : an international journal of inorganic chemistry
container_volume 48
creator Castro, Abril C
Fliegl, Heike
Cascella, Michele
Helgaker, Trygve
Repisky, Michal
Komorovsky, Stanislav
María Ángeles Medrano
Quiroga, Adoración G
Swart, Marcel
description We report a combined experimental–theoretical study on the 31P NMR chemical shift for a number of trans-platinum(ii) complexes. Validity and reliability of the 31P NMR chemical shift calculations are examined by comparing with the experimental data. A successful computational protocol for the accurate prediction of the 31P NMR chemical shifts was established for trans-[PtCl2(dma)PPh3] (dma = dimethylamine) complexes. The reliability of the computed values is shown to be critically dependent on the level of relativistic effects (two-component vs. four component), choice of density functionals, dynamical averaging, and solvation effects. Snapshots obtained from ab initio molecular dynamics simulations were used to identify those solvent molecules which show the largest interactions with the platinum complex, through inspection by using the non-covalent interaction program. We observe satisfactory accuracy from the full four-component matrix Dirac–Kohn–Sham method (mDKS) based on the Dirac–Coulomb Hamiltonian, in conjunction with the KT2 density functional, and dynamical averaging with explicit solvent molecules.
doi_str_mv 10.1039/c9dt00570f
format Article
fullrecord <record><control><sourceid>proquest_crist</sourceid><recordid>TN_cdi_cristin_nora_10037_17873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2198559280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-8aada7fe6088ceb5edf91ecb2b463ea1628c5ff526b9bb5c50c0a3d120ec3d313</originalsourceid><addsrcrecordid>eNpdkMtKxDAUhosoOI5ufAEDbsZFNZdJ07qTwVFhvCC6LunpKWZok9qkgz6Gb2zLqAtX5_Dz8Z1LFB0zes6oyC4gKwOlUtFqJ5qwuVJxxsV896_nyX504P2aUs6p5JPoa-n6LgbXtM6iDaTDWgezMT4YIII9kYf7ZwK6hn7MnfWkch0JnbY-bsfI9s3MmDMyKmr8QH9JzCDrgraAxFUkvCHxrt6Mdm1LUn5a3RjwxFjiW4TBVRNvmt8Bh9FepWuPRz91Gr0ur18Wt_Hq8eZucbWKgc9ViFOtS60qTGiaAhYSyypjCAUv5olAzRKegqwqyZMiKwoJkgLVomScIohSMDGNTrZe6MZrbW5dp3NGqVA5U6kSAzHbEm3n3nv0IW-MB6xrbdH1PucsS6XMeEoH9PQfuh7-aof9c86FShmXGRXfR4KB9g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2237812590</pqid></control><display><type>article</type><title>Four-component relativistic 31P NMR calculations for trans-platinum(ii) complexes: importance of the solvent and dynamics in spectral simulations</title><source>NORA - Norwegian Open Research Archives</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Castro, Abril C ; Fliegl, Heike ; Cascella, Michele ; Helgaker, Trygve ; Repisky, Michal ; Komorovsky, Stanislav ; María Ángeles Medrano ; Quiroga, Adoración G ; Swart, Marcel</creator><creatorcontrib>Castro, Abril C ; Fliegl, Heike ; Cascella, Michele ; Helgaker, Trygve ; Repisky, Michal ; Komorovsky, Stanislav ; María Ángeles Medrano ; Quiroga, Adoración G ; Swart, Marcel</creatorcontrib><description>We report a combined experimental–theoretical study on the 31P NMR chemical shift for a number of trans-platinum(ii) complexes. Validity and reliability of the 31P NMR chemical shift calculations are examined by comparing with the experimental data. A successful computational protocol for the accurate prediction of the 31P NMR chemical shifts was established for trans-[PtCl2(dma)PPh3] (dma = dimethylamine) complexes. The reliability of the computed values is shown to be critically dependent on the level of relativistic effects (two-component vs. four component), choice of density functionals, dynamical averaging, and solvation effects. Snapshots obtained from ab initio molecular dynamics simulations were used to identify those solvent molecules which show the largest interactions with the platinum complex, through inspection by using the non-covalent interaction program. We observe satisfactory accuracy from the full four-component matrix Dirac–Kohn–Sham method (mDKS) based on the Dirac–Coulomb Hamiltonian, in conjunction with the KT2 density functional, and dynamical averaging with explicit solvent molecules.</description><identifier>ISSN: 1477-9226</identifier><identifier>ISSN: 1477-9234</identifier><identifier>EISSN: 1477-9234</identifier><identifier>DOI: 10.1039/c9dt00570f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Chemical equilibrium ; Chemistry: 440 ; Computer simulation ; Density ; Inspection ; Kjemi: 440 ; Matematikk og Naturvitenskap: 400 ; Mathematical analysis ; Mathematics and natural science: 400 ; Molecular dynamics ; NMR ; Nuclear magnetic resonance ; Organic chemistry ; Platinum ; Relativism ; Relativistic effects ; Reliability ; Solvation ; Solvents ; VDP</subject><ispartof>Dalton transactions : an international journal of inorganic chemistry, 2019-01, Vol.48 (23), p.8076-8083</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c247t-8aada7fe6088ceb5edf91ecb2b463ea1628c5ff526b9bb5c50c0a3d120ec3d313</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,26566,27923,27924</link.rule.ids></links><search><creatorcontrib>Castro, Abril C</creatorcontrib><creatorcontrib>Fliegl, Heike</creatorcontrib><creatorcontrib>Cascella, Michele</creatorcontrib><creatorcontrib>Helgaker, Trygve</creatorcontrib><creatorcontrib>Repisky, Michal</creatorcontrib><creatorcontrib>Komorovsky, Stanislav</creatorcontrib><creatorcontrib>María Ángeles Medrano</creatorcontrib><creatorcontrib>Quiroga, Adoración G</creatorcontrib><creatorcontrib>Swart, Marcel</creatorcontrib><title>Four-component relativistic 31P NMR calculations for trans-platinum(ii) complexes: importance of the solvent and dynamics in spectral simulations</title><title>Dalton transactions : an international journal of inorganic chemistry</title><description>We report a combined experimental–theoretical study on the 31P NMR chemical shift for a number of trans-platinum(ii) complexes. Validity and reliability of the 31P NMR chemical shift calculations are examined by comparing with the experimental data. A successful computational protocol for the accurate prediction of the 31P NMR chemical shifts was established for trans-[PtCl2(dma)PPh3] (dma = dimethylamine) complexes. The reliability of the computed values is shown to be critically dependent on the level of relativistic effects (two-component vs. four component), choice of density functionals, dynamical averaging, and solvation effects. Snapshots obtained from ab initio molecular dynamics simulations were used to identify those solvent molecules which show the largest interactions with the platinum complex, through inspection by using the non-covalent interaction program. We observe satisfactory accuracy from the full four-component matrix Dirac–Kohn–Sham method (mDKS) based on the Dirac–Coulomb Hamiltonian, in conjunction with the KT2 density functional, and dynamical averaging with explicit solvent molecules.</description><subject>Chemical equilibrium</subject><subject>Chemistry: 440</subject><subject>Computer simulation</subject><subject>Density</subject><subject>Inspection</subject><subject>Kjemi: 440</subject><subject>Matematikk og Naturvitenskap: 400</subject><subject>Mathematical analysis</subject><subject>Mathematics and natural science: 400</subject><subject>Molecular dynamics</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Organic chemistry</subject><subject>Platinum</subject><subject>Relativism</subject><subject>Relativistic effects</subject><subject>Reliability</subject><subject>Solvation</subject><subject>Solvents</subject><subject>VDP</subject><issn>1477-9226</issn><issn>1477-9234</issn><issn>1477-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNpdkMtKxDAUhosoOI5ufAEDbsZFNZdJ07qTwVFhvCC6LunpKWZok9qkgz6Gb2zLqAtX5_Dz8Z1LFB0zes6oyC4gKwOlUtFqJ5qwuVJxxsV896_nyX504P2aUs6p5JPoa-n6LgbXtM6iDaTDWgezMT4YIII9kYf7ZwK6hn7MnfWkch0JnbY-bsfI9s3MmDMyKmr8QH9JzCDrgraAxFUkvCHxrt6Mdm1LUn5a3RjwxFjiW4TBVRNvmt8Bh9FepWuPRz91Gr0ur18Wt_Hq8eZucbWKgc9ViFOtS60qTGiaAhYSyypjCAUv5olAzRKegqwqyZMiKwoJkgLVomScIohSMDGNTrZe6MZrbW5dp3NGqVA5U6kSAzHbEm3n3nv0IW-MB6xrbdH1PucsS6XMeEoH9PQfuh7-aof9c86FShmXGRXfR4KB9g</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Castro, Abril C</creator><creator>Fliegl, Heike</creator><creator>Cascella, Michele</creator><creator>Helgaker, Trygve</creator><creator>Repisky, Michal</creator><creator>Komorovsky, Stanislav</creator><creator>María Ángeles Medrano</creator><creator>Quiroga, Adoración G</creator><creator>Swart, Marcel</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>3HK</scope></search><sort><creationdate>20190101</creationdate><title>Four-component relativistic 31P NMR calculations for trans-platinum(ii) complexes: importance of the solvent and dynamics in spectral simulations</title><author>Castro, Abril C ; Fliegl, Heike ; Cascella, Michele ; Helgaker, Trygve ; Repisky, Michal ; Komorovsky, Stanislav ; María Ángeles Medrano ; Quiroga, Adoración G ; Swart, Marcel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-8aada7fe6088ceb5edf91ecb2b463ea1628c5ff526b9bb5c50c0a3d120ec3d313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chemical equilibrium</topic><topic>Chemistry: 440</topic><topic>Computer simulation</topic><topic>Density</topic><topic>Inspection</topic><topic>Kjemi: 440</topic><topic>Matematikk og Naturvitenskap: 400</topic><topic>Mathematical analysis</topic><topic>Mathematics and natural science: 400</topic><topic>Molecular dynamics</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Organic chemistry</topic><topic>Platinum</topic><topic>Relativism</topic><topic>Relativistic effects</topic><topic>Reliability</topic><topic>Solvation</topic><topic>Solvents</topic><topic>VDP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castro, Abril C</creatorcontrib><creatorcontrib>Fliegl, Heike</creatorcontrib><creatorcontrib>Cascella, Michele</creatorcontrib><creatorcontrib>Helgaker, Trygve</creatorcontrib><creatorcontrib>Repisky, Michal</creatorcontrib><creatorcontrib>Komorovsky, Stanislav</creatorcontrib><creatorcontrib>María Ángeles Medrano</creatorcontrib><creatorcontrib>Quiroga, Adoración G</creatorcontrib><creatorcontrib>Swart, Marcel</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>NORA - Norwegian Open Research Archives</collection><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castro, Abril C</au><au>Fliegl, Heike</au><au>Cascella, Michele</au><au>Helgaker, Trygve</au><au>Repisky, Michal</au><au>Komorovsky, Stanislav</au><au>María Ángeles Medrano</au><au>Quiroga, Adoración G</au><au>Swart, Marcel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Four-component relativistic 31P NMR calculations for trans-platinum(ii) complexes: importance of the solvent and dynamics in spectral simulations</atitle><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>48</volume><issue>23</issue><spage>8076</spage><epage>8083</epage><pages>8076-8083</pages><issn>1477-9226</issn><issn>1477-9234</issn><eissn>1477-9234</eissn><abstract>We report a combined experimental–theoretical study on the 31P NMR chemical shift for a number of trans-platinum(ii) complexes. Validity and reliability of the 31P NMR chemical shift calculations are examined by comparing with the experimental data. A successful computational protocol for the accurate prediction of the 31P NMR chemical shifts was established for trans-[PtCl2(dma)PPh3] (dma = dimethylamine) complexes. The reliability of the computed values is shown to be critically dependent on the level of relativistic effects (two-component vs. four component), choice of density functionals, dynamical averaging, and solvation effects. Snapshots obtained from ab initio molecular dynamics simulations were used to identify those solvent molecules which show the largest interactions with the platinum complex, through inspection by using the non-covalent interaction program. We observe satisfactory accuracy from the full four-component matrix Dirac–Kohn–Sham method (mDKS) based on the Dirac–Coulomb Hamiltonian, in conjunction with the KT2 density functional, and dynamical averaging with explicit solvent molecules.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9dt00570f</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1477-9226
ispartof Dalton transactions : an international journal of inorganic chemistry, 2019-01, Vol.48 (23), p.8076-8083
issn 1477-9226
1477-9234
1477-9234
language eng
recordid cdi_cristin_nora_10037_17873
source NORA - Norwegian Open Research Archives; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Chemical equilibrium
Chemistry: 440
Computer simulation
Density
Inspection
Kjemi: 440
Matematikk og Naturvitenskap: 400
Mathematical analysis
Mathematics and natural science: 400
Molecular dynamics
NMR
Nuclear magnetic resonance
Organic chemistry
Platinum
Relativism
Relativistic effects
Reliability
Solvation
Solvents
VDP
title Four-component relativistic 31P NMR calculations for trans-platinum(ii) complexes: importance of the solvent and dynamics in spectral simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A27%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_crist&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Four-component%20relativistic%2031P%20NMR%20calculations%20for%20trans-platinum(ii)%20complexes:%20importance%20of%20the%20solvent%20and%20dynamics%20in%20spectral%20simulations&rft.jtitle=Dalton%20transactions%20:%20an%20international%20journal%20of%20inorganic%20chemistry&rft.au=Castro,%20Abril%20C&rft.date=2019-01-01&rft.volume=48&rft.issue=23&rft.spage=8076&rft.epage=8083&rft.pages=8076-8083&rft.issn=1477-9226&rft.eissn=1477-9234&rft_id=info:doi/10.1039/c9dt00570f&rft_dat=%3Cproquest_crist%3E2198559280%3C/proquest_crist%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2237812590&rft_id=info:pmid/&rfr_iscdi=true