Four-component relativistic 31P NMR calculations for trans-platinum(ii) complexes: importance of the solvent and dynamics in spectral simulations
We report a combined experimental–theoretical study on the 31P NMR chemical shift for a number of trans-platinum(ii) complexes. Validity and reliability of the 31P NMR chemical shift calculations are examined by comparing with the experimental data. A successful computational protocol for the accura...
Gespeichert in:
Veröffentlicht in: | Dalton transactions : an international journal of inorganic chemistry 2019-01, Vol.48 (23), p.8076-8083 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8083 |
---|---|
container_issue | 23 |
container_start_page | 8076 |
container_title | Dalton transactions : an international journal of inorganic chemistry |
container_volume | 48 |
creator | Castro, Abril C Fliegl, Heike Cascella, Michele Helgaker, Trygve Repisky, Michal Komorovsky, Stanislav María Ángeles Medrano Quiroga, Adoración G Swart, Marcel |
description | We report a combined experimental–theoretical study on the 31P NMR chemical shift for a number of trans-platinum(ii) complexes. Validity and reliability of the 31P NMR chemical shift calculations are examined by comparing with the experimental data. A successful computational protocol for the accurate prediction of the 31P NMR chemical shifts was established for trans-[PtCl2(dma)PPh3] (dma = dimethylamine) complexes. The reliability of the computed values is shown to be critically dependent on the level of relativistic effects (two-component vs. four component), choice of density functionals, dynamical averaging, and solvation effects. Snapshots obtained from ab initio molecular dynamics simulations were used to identify those solvent molecules which show the largest interactions with the platinum complex, through inspection by using the non-covalent interaction program. We observe satisfactory accuracy from the full four-component matrix Dirac–Kohn–Sham method (mDKS) based on the Dirac–Coulomb Hamiltonian, in conjunction with the KT2 density functional, and dynamical averaging with explicit solvent molecules. |
doi_str_mv | 10.1039/c9dt00570f |
format | Article |
fullrecord | <record><control><sourceid>proquest_crist</sourceid><recordid>TN_cdi_cristin_nora_10037_17873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2198559280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-8aada7fe6088ceb5edf91ecb2b463ea1628c5ff526b9bb5c50c0a3d120ec3d313</originalsourceid><addsrcrecordid>eNpdkMtKxDAUhosoOI5ufAEDbsZFNZdJ07qTwVFhvCC6LunpKWZok9qkgz6Gb2zLqAtX5_Dz8Z1LFB0zes6oyC4gKwOlUtFqJ5qwuVJxxsV896_nyX504P2aUs6p5JPoa-n6LgbXtM6iDaTDWgezMT4YIII9kYf7ZwK6hn7MnfWkch0JnbY-bsfI9s3MmDMyKmr8QH9JzCDrgraAxFUkvCHxrt6Mdm1LUn5a3RjwxFjiW4TBVRNvmt8Bh9FepWuPRz91Gr0ur18Wt_Hq8eZucbWKgc9ViFOtS60qTGiaAhYSyypjCAUv5olAzRKegqwqyZMiKwoJkgLVomScIohSMDGNTrZe6MZrbW5dp3NGqVA5U6kSAzHbEm3n3nv0IW-MB6xrbdH1PucsS6XMeEoH9PQfuh7-aof9c86FShmXGRXfR4KB9g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2237812590</pqid></control><display><type>article</type><title>Four-component relativistic 31P NMR calculations for trans-platinum(ii) complexes: importance of the solvent and dynamics in spectral simulations</title><source>NORA - Norwegian Open Research Archives</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Castro, Abril C ; Fliegl, Heike ; Cascella, Michele ; Helgaker, Trygve ; Repisky, Michal ; Komorovsky, Stanislav ; María Ángeles Medrano ; Quiroga, Adoración G ; Swart, Marcel</creator><creatorcontrib>Castro, Abril C ; Fliegl, Heike ; Cascella, Michele ; Helgaker, Trygve ; Repisky, Michal ; Komorovsky, Stanislav ; María Ángeles Medrano ; Quiroga, Adoración G ; Swart, Marcel</creatorcontrib><description>We report a combined experimental–theoretical study on the 31P NMR chemical shift for a number of trans-platinum(ii) complexes. Validity and reliability of the 31P NMR chemical shift calculations are examined by comparing with the experimental data. A successful computational protocol for the accurate prediction of the 31P NMR chemical shifts was established for trans-[PtCl2(dma)PPh3] (dma = dimethylamine) complexes. The reliability of the computed values is shown to be critically dependent on the level of relativistic effects (two-component vs. four component), choice of density functionals, dynamical averaging, and solvation effects. Snapshots obtained from ab initio molecular dynamics simulations were used to identify those solvent molecules which show the largest interactions with the platinum complex, through inspection by using the non-covalent interaction program. We observe satisfactory accuracy from the full four-component matrix Dirac–Kohn–Sham method (mDKS) based on the Dirac–Coulomb Hamiltonian, in conjunction with the KT2 density functional, and dynamical averaging with explicit solvent molecules.</description><identifier>ISSN: 1477-9226</identifier><identifier>ISSN: 1477-9234</identifier><identifier>EISSN: 1477-9234</identifier><identifier>DOI: 10.1039/c9dt00570f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Chemical equilibrium ; Chemistry: 440 ; Computer simulation ; Density ; Inspection ; Kjemi: 440 ; Matematikk og Naturvitenskap: 400 ; Mathematical analysis ; Mathematics and natural science: 400 ; Molecular dynamics ; NMR ; Nuclear magnetic resonance ; Organic chemistry ; Platinum ; Relativism ; Relativistic effects ; Reliability ; Solvation ; Solvents ; VDP</subject><ispartof>Dalton transactions : an international journal of inorganic chemistry, 2019-01, Vol.48 (23), p.8076-8083</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c247t-8aada7fe6088ceb5edf91ecb2b463ea1628c5ff526b9bb5c50c0a3d120ec3d313</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,26566,27923,27924</link.rule.ids></links><search><creatorcontrib>Castro, Abril C</creatorcontrib><creatorcontrib>Fliegl, Heike</creatorcontrib><creatorcontrib>Cascella, Michele</creatorcontrib><creatorcontrib>Helgaker, Trygve</creatorcontrib><creatorcontrib>Repisky, Michal</creatorcontrib><creatorcontrib>Komorovsky, Stanislav</creatorcontrib><creatorcontrib>María Ángeles Medrano</creatorcontrib><creatorcontrib>Quiroga, Adoración G</creatorcontrib><creatorcontrib>Swart, Marcel</creatorcontrib><title>Four-component relativistic 31P NMR calculations for trans-platinum(ii) complexes: importance of the solvent and dynamics in spectral simulations</title><title>Dalton transactions : an international journal of inorganic chemistry</title><description>We report a combined experimental–theoretical study on the 31P NMR chemical shift for a number of trans-platinum(ii) complexes. Validity and reliability of the 31P NMR chemical shift calculations are examined by comparing with the experimental data. A successful computational protocol for the accurate prediction of the 31P NMR chemical shifts was established for trans-[PtCl2(dma)PPh3] (dma = dimethylamine) complexes. The reliability of the computed values is shown to be critically dependent on the level of relativistic effects (two-component vs. four component), choice of density functionals, dynamical averaging, and solvation effects. Snapshots obtained from ab initio molecular dynamics simulations were used to identify those solvent molecules which show the largest interactions with the platinum complex, through inspection by using the non-covalent interaction program. We observe satisfactory accuracy from the full four-component matrix Dirac–Kohn–Sham method (mDKS) based on the Dirac–Coulomb Hamiltonian, in conjunction with the KT2 density functional, and dynamical averaging with explicit solvent molecules.</description><subject>Chemical equilibrium</subject><subject>Chemistry: 440</subject><subject>Computer simulation</subject><subject>Density</subject><subject>Inspection</subject><subject>Kjemi: 440</subject><subject>Matematikk og Naturvitenskap: 400</subject><subject>Mathematical analysis</subject><subject>Mathematics and natural science: 400</subject><subject>Molecular dynamics</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Organic chemistry</subject><subject>Platinum</subject><subject>Relativism</subject><subject>Relativistic effects</subject><subject>Reliability</subject><subject>Solvation</subject><subject>Solvents</subject><subject>VDP</subject><issn>1477-9226</issn><issn>1477-9234</issn><issn>1477-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNpdkMtKxDAUhosoOI5ufAEDbsZFNZdJ07qTwVFhvCC6LunpKWZok9qkgz6Gb2zLqAtX5_Dz8Z1LFB0zes6oyC4gKwOlUtFqJ5qwuVJxxsV896_nyX504P2aUs6p5JPoa-n6LgbXtM6iDaTDWgezMT4YIII9kYf7ZwK6hn7MnfWkch0JnbY-bsfI9s3MmDMyKmr8QH9JzCDrgraAxFUkvCHxrt6Mdm1LUn5a3RjwxFjiW4TBVRNvmt8Bh9FepWuPRz91Gr0ur18Wt_Hq8eZucbWKgc9ViFOtS60qTGiaAhYSyypjCAUv5olAzRKegqwqyZMiKwoJkgLVomScIohSMDGNTrZe6MZrbW5dp3NGqVA5U6kSAzHbEm3n3nv0IW-MB6xrbdH1PucsS6XMeEoH9PQfuh7-aof9c86FShmXGRXfR4KB9g</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Castro, Abril C</creator><creator>Fliegl, Heike</creator><creator>Cascella, Michele</creator><creator>Helgaker, Trygve</creator><creator>Repisky, Michal</creator><creator>Komorovsky, Stanislav</creator><creator>María Ángeles Medrano</creator><creator>Quiroga, Adoración G</creator><creator>Swart, Marcel</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>3HK</scope></search><sort><creationdate>20190101</creationdate><title>Four-component relativistic 31P NMR calculations for trans-platinum(ii) complexes: importance of the solvent and dynamics in spectral simulations</title><author>Castro, Abril C ; Fliegl, Heike ; Cascella, Michele ; Helgaker, Trygve ; Repisky, Michal ; Komorovsky, Stanislav ; María Ángeles Medrano ; Quiroga, Adoración G ; Swart, Marcel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-8aada7fe6088ceb5edf91ecb2b463ea1628c5ff526b9bb5c50c0a3d120ec3d313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chemical equilibrium</topic><topic>Chemistry: 440</topic><topic>Computer simulation</topic><topic>Density</topic><topic>Inspection</topic><topic>Kjemi: 440</topic><topic>Matematikk og Naturvitenskap: 400</topic><topic>Mathematical analysis</topic><topic>Mathematics and natural science: 400</topic><topic>Molecular dynamics</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Organic chemistry</topic><topic>Platinum</topic><topic>Relativism</topic><topic>Relativistic effects</topic><topic>Reliability</topic><topic>Solvation</topic><topic>Solvents</topic><topic>VDP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castro, Abril C</creatorcontrib><creatorcontrib>Fliegl, Heike</creatorcontrib><creatorcontrib>Cascella, Michele</creatorcontrib><creatorcontrib>Helgaker, Trygve</creatorcontrib><creatorcontrib>Repisky, Michal</creatorcontrib><creatorcontrib>Komorovsky, Stanislav</creatorcontrib><creatorcontrib>María Ángeles Medrano</creatorcontrib><creatorcontrib>Quiroga, Adoración G</creatorcontrib><creatorcontrib>Swart, Marcel</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>NORA - Norwegian Open Research Archives</collection><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castro, Abril C</au><au>Fliegl, Heike</au><au>Cascella, Michele</au><au>Helgaker, Trygve</au><au>Repisky, Michal</au><au>Komorovsky, Stanislav</au><au>María Ángeles Medrano</au><au>Quiroga, Adoración G</au><au>Swart, Marcel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Four-component relativistic 31P NMR calculations for trans-platinum(ii) complexes: importance of the solvent and dynamics in spectral simulations</atitle><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>48</volume><issue>23</issue><spage>8076</spage><epage>8083</epage><pages>8076-8083</pages><issn>1477-9226</issn><issn>1477-9234</issn><eissn>1477-9234</eissn><abstract>We report a combined experimental–theoretical study on the 31P NMR chemical shift for a number of trans-platinum(ii) complexes. Validity and reliability of the 31P NMR chemical shift calculations are examined by comparing with the experimental data. A successful computational protocol for the accurate prediction of the 31P NMR chemical shifts was established for trans-[PtCl2(dma)PPh3] (dma = dimethylamine) complexes. The reliability of the computed values is shown to be critically dependent on the level of relativistic effects (two-component vs. four component), choice of density functionals, dynamical averaging, and solvation effects. Snapshots obtained from ab initio molecular dynamics simulations were used to identify those solvent molecules which show the largest interactions with the platinum complex, through inspection by using the non-covalent interaction program. We observe satisfactory accuracy from the full four-component matrix Dirac–Kohn–Sham method (mDKS) based on the Dirac–Coulomb Hamiltonian, in conjunction with the KT2 density functional, and dynamical averaging with explicit solvent molecules.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9dt00570f</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1477-9226 |
ispartof | Dalton transactions : an international journal of inorganic chemistry, 2019-01, Vol.48 (23), p.8076-8083 |
issn | 1477-9226 1477-9234 1477-9234 |
language | eng |
recordid | cdi_cristin_nora_10037_17873 |
source | NORA - Norwegian Open Research Archives; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Chemical equilibrium Chemistry: 440 Computer simulation Density Inspection Kjemi: 440 Matematikk og Naturvitenskap: 400 Mathematical analysis Mathematics and natural science: 400 Molecular dynamics NMR Nuclear magnetic resonance Organic chemistry Platinum Relativism Relativistic effects Reliability Solvation Solvents VDP |
title | Four-component relativistic 31P NMR calculations for trans-platinum(ii) complexes: importance of the solvent and dynamics in spectral simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A27%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_crist&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Four-component%20relativistic%2031P%20NMR%20calculations%20for%20trans-platinum(ii)%20complexes:%20importance%20of%20the%20solvent%20and%20dynamics%20in%20spectral%20simulations&rft.jtitle=Dalton%20transactions%20:%20an%20international%20journal%20of%20inorganic%20chemistry&rft.au=Castro,%20Abril%20C&rft.date=2019-01-01&rft.volume=48&rft.issue=23&rft.spage=8076&rft.epage=8083&rft.pages=8076-8083&rft.issn=1477-9226&rft.eissn=1477-9234&rft_id=info:doi/10.1039/c9dt00570f&rft_dat=%3Cproquest_crist%3E2198559280%3C/proquest_crist%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2237812590&rft_id=info:pmid/&rfr_iscdi=true |