Unsupervised Feature Extraction – A CNN-Based Approach

Working with large quantities of digital images can often lead to prohibitive computational challenges due to their massive number of pixels and high dimensionality. The extraction of compressed vectorial representations from images is therefore a task of vital importance in the field of computer vi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Trosten, Daniel J., Sharma, Puneet
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 208
container_issue
container_start_page 197
container_title
container_volume 11482
creator Trosten, Daniel J.
Sharma, Puneet
description Working with large quantities of digital images can often lead to prohibitive computational challenges due to their massive number of pixels and high dimensionality. The extraction of compressed vectorial representations from images is therefore a task of vital importance in the field of computer vision. In this paper, we propose a new architecture for extracting such features from images in an unsupervised manner, which is based on convolutional neural networks. The model is referred to as the Unsupervised Convolutional Siamese Network (UCSN), and is trained to embed a set of images in a vector space, such that local distance structure in the space of images is approximately preserved. We compare the UCSN to several classical methods by using the extracted features as input to a classification system. Our results indicate that the UCSN produces vectorial representations that are suitable for classification purposes.
doi_str_mv 10.1007/978-3-030-20205-7_17
format Book Chapter
fullrecord <record><control><sourceid>proquest_crist</sourceid><recordid>TN_cdi_cristin_nora_10037_17792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC5922326_190_208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-93a8da1d8f84e05629ca10eb44bed6ba62be55a6c0dfed21b46a60aaaba4bd1c3</originalsourceid><addsrcrecordid>eNo1kEtOwzAQQM1XtKU3QCIXMIw_seNlqSggobKha2viuDSAkmCniCV34IacBIfCytb4PUvzCDljcMEA9KXRBRUUBFAOHHKqLdN7ZCzS5Hcg98mIKcaoENIckGni_98kHJLRcKdGS3FMxoxBzopCczgh0xifAYBzMKDkiBSrJm47H97r6Kts4bHfBp9df_QBXV-3Tfb9-ZXNsvlySa9wQGZdF1p0m1NytMbX6Kd_54SsFteP81t6_3BzN5_dU8eV7qkRWFTIqmJdSA-54sYhA19KWfpKlah46fMclYNq7SvOSqlQASKWKMuKOTEh57t_XahjXze2aQPa1EgMSbThieA7Inahbp58sGXbvsTEDJi2KY0VNgWxv-Xs4CVJ7qS0zdvWx976wXK-SZu_ug12vQ_R5oZzwZVlZrAL8QP5cnDO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC5922326_190_208</pqid></control><display><type>book_chapter</type><title>Unsupervised Feature Extraction – A CNN-Based Approach</title><source>NORA - Norwegian Open Research Archives</source><source>Springer Books</source><creator>Trosten, Daniel J. ; Sharma, Puneet</creator><contributor>Unger, Jonas ; Sintorn, Ida-Maria ; Forssén, Per-Erik ; Felsberg, Michael ; Felsberg, Michael ; Forssén, Per-Erik ; Sintorn, Ida-Maria ; Unger, Jonas</contributor><creatorcontrib>Trosten, Daniel J. ; Sharma, Puneet ; Unger, Jonas ; Sintorn, Ida-Maria ; Forssén, Per-Erik ; Felsberg, Michael ; Felsberg, Michael ; Forssén, Per-Erik ; Sintorn, Ida-Maria ; Unger, Jonas</creatorcontrib><description>Working with large quantities of digital images can often lead to prohibitive computational challenges due to their massive number of pixels and high dimensionality. The extraction of compressed vectorial representations from images is therefore a task of vital importance in the field of computer vision. In this paper, we propose a new architecture for extracting such features from images in an unsupervised manner, which is based on convolutional neural networks. The model is referred to as the Unsupervised Convolutional Siamese Network (UCSN), and is trained to embed a set of images in a vector space, such that local distance structure in the space of images is approximately preserved. We compare the UCSN to several classical methods by using the extracted features as input to a classification system. Our results indicate that the UCSN produces vectorial representations that are suitable for classification purposes.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISSN: 1611-3349</identifier><identifier>ISBN: 9783030202040</identifier><identifier>ISBN: 3030202046</identifier><identifier>ISBN: 3030202054</identifier><identifier>ISBN: 9783030202057</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3030202054</identifier><identifier>EISBN: 9783030202057</identifier><identifier>DOI: 10.1007/978-3-030-20205-7_17</identifier><identifier>OCLC: 1105188720</identifier><identifier>LCCallNum: TA1634</identifier><language>eng</language><publisher>Switzerland: Springer International Publishing AG</publisher><subject>Maskinfag: 570 ; Mechanical engineering: 570 ; Technology: 500 ; Teknologi: 500 ; VDP</subject><ispartof>Image Analysis, 2019, Vol.11482, p.197-208</ispartof><rights>Springer Nature Switzerland AG 2019</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/5922326-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-030-20205-7_17$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-030-20205-7_17$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,775,776,780,789,881,4010,26544,27900,27901,27902,38232,41418,42487</link.rule.ids></links><search><contributor>Unger, Jonas</contributor><contributor>Sintorn, Ida-Maria</contributor><contributor>Forssén, Per-Erik</contributor><contributor>Felsberg, Michael</contributor><contributor>Felsberg, Michael</contributor><contributor>Forssén, Per-Erik</contributor><contributor>Sintorn, Ida-Maria</contributor><contributor>Unger, Jonas</contributor><creatorcontrib>Trosten, Daniel J.</creatorcontrib><creatorcontrib>Sharma, Puneet</creatorcontrib><title>Unsupervised Feature Extraction – A CNN-Based Approach</title><title>Image Analysis</title><description>Working with large quantities of digital images can often lead to prohibitive computational challenges due to their massive number of pixels and high dimensionality. The extraction of compressed vectorial representations from images is therefore a task of vital importance in the field of computer vision. In this paper, we propose a new architecture for extracting such features from images in an unsupervised manner, which is based on convolutional neural networks. The model is referred to as the Unsupervised Convolutional Siamese Network (UCSN), and is trained to embed a set of images in a vector space, such that local distance structure in the space of images is approximately preserved. We compare the UCSN to several classical methods by using the extracted features as input to a classification system. Our results indicate that the UCSN produces vectorial representations that are suitable for classification purposes.</description><subject>Maskinfag: 570</subject><subject>Mechanical engineering: 570</subject><subject>Technology: 500</subject><subject>Teknologi: 500</subject><subject>VDP</subject><issn>0302-9743</issn><issn>1611-3349</issn><issn>1611-3349</issn><isbn>9783030202040</isbn><isbn>3030202046</isbn><isbn>3030202054</isbn><isbn>9783030202057</isbn><isbn>3030202054</isbn><isbn>9783030202057</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2019</creationdate><recordtype>book_chapter</recordtype><sourceid>3HK</sourceid><recordid>eNo1kEtOwzAQQM1XtKU3QCIXMIw_seNlqSggobKha2viuDSAkmCniCV34IacBIfCytb4PUvzCDljcMEA9KXRBRUUBFAOHHKqLdN7ZCzS5Hcg98mIKcaoENIckGni_98kHJLRcKdGS3FMxoxBzopCczgh0xifAYBzMKDkiBSrJm47H97r6Kts4bHfBp9df_QBXV-3Tfb9-ZXNsvlySa9wQGZdF1p0m1NytMbX6Kd_54SsFteP81t6_3BzN5_dU8eV7qkRWFTIqmJdSA-54sYhA19KWfpKlah46fMclYNq7SvOSqlQASKWKMuKOTEh57t_XahjXze2aQPa1EgMSbThieA7Inahbp58sGXbvsTEDJi2KY0VNgWxv-Xs4CVJ7qS0zdvWx976wXK-SZu_ug12vQ_R5oZzwZVlZrAL8QP5cnDO</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Trosten, Daniel J.</creator><creator>Sharma, Puneet</creator><general>Springer International Publishing AG</general><general>Springer International Publishing</general><general>Springer Nature</general><scope>FFUUA</scope><scope>3HK</scope></search><sort><creationdate>2019</creationdate><title>Unsupervised Feature Extraction – A CNN-Based Approach</title><author>Trosten, Daniel J. ; Sharma, Puneet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-93a8da1d8f84e05629ca10eb44bed6ba62be55a6c0dfed21b46a60aaaba4bd1c3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Maskinfag: 570</topic><topic>Mechanical engineering: 570</topic><topic>Technology: 500</topic><topic>Teknologi: 500</topic><topic>VDP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trosten, Daniel J.</creatorcontrib><creatorcontrib>Sharma, Puneet</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>NORA - Norwegian Open Research Archives</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trosten, Daniel J.</au><au>Sharma, Puneet</au><au>Unger, Jonas</au><au>Sintorn, Ida-Maria</au><au>Forssén, Per-Erik</au><au>Felsberg, Michael</au><au>Felsberg, Michael</au><au>Forssén, Per-Erik</au><au>Sintorn, Ida-Maria</au><au>Unger, Jonas</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Unsupervised Feature Extraction – A CNN-Based Approach</atitle><btitle>Image Analysis</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2019</date><risdate>2019</risdate><volume>11482</volume><spage>197</spage><epage>208</epage><pages>197-208</pages><issn>0302-9743</issn><issn>1611-3349</issn><eissn>1611-3349</eissn><isbn>9783030202040</isbn><isbn>3030202046</isbn><isbn>3030202054</isbn><isbn>9783030202057</isbn><eisbn>3030202054</eisbn><eisbn>9783030202057</eisbn><abstract>Working with large quantities of digital images can often lead to prohibitive computational challenges due to their massive number of pixels and high dimensionality. The extraction of compressed vectorial representations from images is therefore a task of vital importance in the field of computer vision. In this paper, we propose a new architecture for extracting such features from images in an unsupervised manner, which is based on convolutional neural networks. The model is referred to as the Unsupervised Convolutional Siamese Network (UCSN), and is trained to embed a set of images in a vector space, such that local distance structure in the space of images is approximately preserved. We compare the UCSN to several classical methods by using the extracted features as input to a classification system. Our results indicate that the UCSN produces vectorial representations that are suitable for classification purposes.</abstract><cop>Switzerland</cop><pub>Springer International Publishing AG</pub><doi>10.1007/978-3-030-20205-7_17</doi><oclcid>1105188720</oclcid><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Image Analysis, 2019, Vol.11482, p.197-208
issn 0302-9743
1611-3349
1611-3349
language eng
recordid cdi_cristin_nora_10037_17792
source NORA - Norwegian Open Research Archives; Springer Books
subjects Maskinfag: 570
Mechanical engineering: 570
Technology: 500
Teknologi: 500
VDP
title Unsupervised Feature Extraction – A CNN-Based Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A31%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_crist&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Unsupervised%20Feature%20Extraction%20%E2%80%93%20A%20CNN-Based%20Approach&rft.btitle=Image%20Analysis&rft.au=Trosten,%20Daniel%20J.&rft.date=2019&rft.volume=11482&rft.spage=197&rft.epage=208&rft.pages=197-208&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783030202040&rft.isbn_list=3030202046&rft.isbn_list=3030202054&rft.isbn_list=9783030202057&rft_id=info:doi/10.1007/978-3-030-20205-7_17&rft_dat=%3Cproquest_crist%3EEBC5922326_190_208%3C/proquest_crist%3E%3Curl%3E%3C/url%3E&rft.eisbn=3030202054&rft.eisbn_list=9783030202057&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC5922326_190_208&rft_id=info:pmid/&rfr_iscdi=true