Unsupervised Feature Extraction – A CNN-Based Approach
Working with large quantities of digital images can often lead to prohibitive computational challenges due to their massive number of pixels and high dimensionality. The extraction of compressed vectorial representations from images is therefore a task of vital importance in the field of computer vi...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 208 |
---|---|
container_issue | |
container_start_page | 197 |
container_title | |
container_volume | 11482 |
creator | Trosten, Daniel J. Sharma, Puneet |
description | Working with large quantities of digital images can often lead to prohibitive computational challenges due to their massive number of pixels and high dimensionality. The extraction of compressed vectorial representations from images is therefore a task of vital importance in the field of computer vision. In this paper, we propose a new architecture for extracting such features from images in an unsupervised manner, which is based on convolutional neural networks. The model is referred to as the Unsupervised Convolutional Siamese Network (UCSN), and is trained to embed a set of images in a vector space, such that local distance structure in the space of images is approximately preserved. We compare the UCSN to several classical methods by using the extracted features as input to a classification system. Our results indicate that the UCSN produces vectorial representations that are suitable for classification purposes. |
doi_str_mv | 10.1007/978-3-030-20205-7_17 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_crist</sourceid><recordid>TN_cdi_cristin_nora_10037_17792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC5922326_190_208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-93a8da1d8f84e05629ca10eb44bed6ba62be55a6c0dfed21b46a60aaaba4bd1c3</originalsourceid><addsrcrecordid>eNo1kEtOwzAQQM1XtKU3QCIXMIw_seNlqSggobKha2viuDSAkmCniCV34IacBIfCytb4PUvzCDljcMEA9KXRBRUUBFAOHHKqLdN7ZCzS5Hcg98mIKcaoENIckGni_98kHJLRcKdGS3FMxoxBzopCczgh0xifAYBzMKDkiBSrJm47H97r6Kts4bHfBp9df_QBXV-3Tfb9-ZXNsvlySa9wQGZdF1p0m1NytMbX6Kd_54SsFteP81t6_3BzN5_dU8eV7qkRWFTIqmJdSA-54sYhA19KWfpKlah46fMclYNq7SvOSqlQASKWKMuKOTEh57t_XahjXze2aQPa1EgMSbThieA7Inahbp58sGXbvsTEDJi2KY0VNgWxv-Xs4CVJ7qS0zdvWx976wXK-SZu_ug12vQ_R5oZzwZVlZrAL8QP5cnDO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC5922326_190_208</pqid></control><display><type>book_chapter</type><title>Unsupervised Feature Extraction – A CNN-Based Approach</title><source>NORA - Norwegian Open Research Archives</source><source>Springer Books</source><creator>Trosten, Daniel J. ; Sharma, Puneet</creator><contributor>Unger, Jonas ; Sintorn, Ida-Maria ; Forssén, Per-Erik ; Felsberg, Michael ; Felsberg, Michael ; Forssén, Per-Erik ; Sintorn, Ida-Maria ; Unger, Jonas</contributor><creatorcontrib>Trosten, Daniel J. ; Sharma, Puneet ; Unger, Jonas ; Sintorn, Ida-Maria ; Forssén, Per-Erik ; Felsberg, Michael ; Felsberg, Michael ; Forssén, Per-Erik ; Sintorn, Ida-Maria ; Unger, Jonas</creatorcontrib><description>Working with large quantities of digital images can often lead to prohibitive computational challenges due to their massive number of pixels and high dimensionality. The extraction of compressed vectorial representations from images is therefore a task of vital importance in the field of computer vision. In this paper, we propose a new architecture for extracting such features from images in an unsupervised manner, which is based on convolutional neural networks. The model is referred to as the Unsupervised Convolutional Siamese Network (UCSN), and is trained to embed a set of images in a vector space, such that local distance structure in the space of images is approximately preserved. We compare the UCSN to several classical methods by using the extracted features as input to a classification system. Our results indicate that the UCSN produces vectorial representations that are suitable for classification purposes.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISSN: 1611-3349</identifier><identifier>ISBN: 9783030202040</identifier><identifier>ISBN: 3030202046</identifier><identifier>ISBN: 3030202054</identifier><identifier>ISBN: 9783030202057</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3030202054</identifier><identifier>EISBN: 9783030202057</identifier><identifier>DOI: 10.1007/978-3-030-20205-7_17</identifier><identifier>OCLC: 1105188720</identifier><identifier>LCCallNum: TA1634</identifier><language>eng</language><publisher>Switzerland: Springer International Publishing AG</publisher><subject>Maskinfag: 570 ; Mechanical engineering: 570 ; Technology: 500 ; Teknologi: 500 ; VDP</subject><ispartof>Image Analysis, 2019, Vol.11482, p.197-208</ispartof><rights>Springer Nature Switzerland AG 2019</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/5922326-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-030-20205-7_17$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-030-20205-7_17$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,775,776,780,789,881,4010,26544,27900,27901,27902,38232,41418,42487</link.rule.ids></links><search><contributor>Unger, Jonas</contributor><contributor>Sintorn, Ida-Maria</contributor><contributor>Forssén, Per-Erik</contributor><contributor>Felsberg, Michael</contributor><contributor>Felsberg, Michael</contributor><contributor>Forssén, Per-Erik</contributor><contributor>Sintorn, Ida-Maria</contributor><contributor>Unger, Jonas</contributor><creatorcontrib>Trosten, Daniel J.</creatorcontrib><creatorcontrib>Sharma, Puneet</creatorcontrib><title>Unsupervised Feature Extraction – A CNN-Based Approach</title><title>Image Analysis</title><description>Working with large quantities of digital images can often lead to prohibitive computational challenges due to their massive number of pixels and high dimensionality. The extraction of compressed vectorial representations from images is therefore a task of vital importance in the field of computer vision. In this paper, we propose a new architecture for extracting such features from images in an unsupervised manner, which is based on convolutional neural networks. The model is referred to as the Unsupervised Convolutional Siamese Network (UCSN), and is trained to embed a set of images in a vector space, such that local distance structure in the space of images is approximately preserved. We compare the UCSN to several classical methods by using the extracted features as input to a classification system. Our results indicate that the UCSN produces vectorial representations that are suitable for classification purposes.</description><subject>Maskinfag: 570</subject><subject>Mechanical engineering: 570</subject><subject>Technology: 500</subject><subject>Teknologi: 500</subject><subject>VDP</subject><issn>0302-9743</issn><issn>1611-3349</issn><issn>1611-3349</issn><isbn>9783030202040</isbn><isbn>3030202046</isbn><isbn>3030202054</isbn><isbn>9783030202057</isbn><isbn>3030202054</isbn><isbn>9783030202057</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2019</creationdate><recordtype>book_chapter</recordtype><sourceid>3HK</sourceid><recordid>eNo1kEtOwzAQQM1XtKU3QCIXMIw_seNlqSggobKha2viuDSAkmCniCV34IacBIfCytb4PUvzCDljcMEA9KXRBRUUBFAOHHKqLdN7ZCzS5Hcg98mIKcaoENIckGni_98kHJLRcKdGS3FMxoxBzopCczgh0xifAYBzMKDkiBSrJm47H97r6Kts4bHfBp9df_QBXV-3Tfb9-ZXNsvlySa9wQGZdF1p0m1NytMbX6Kd_54SsFteP81t6_3BzN5_dU8eV7qkRWFTIqmJdSA-54sYhA19KWfpKlah46fMclYNq7SvOSqlQASKWKMuKOTEh57t_XahjXze2aQPa1EgMSbThieA7Inahbp58sGXbvsTEDJi2KY0VNgWxv-Xs4CVJ7qS0zdvWx976wXK-SZu_ug12vQ_R5oZzwZVlZrAL8QP5cnDO</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Trosten, Daniel J.</creator><creator>Sharma, Puneet</creator><general>Springer International Publishing AG</general><general>Springer International Publishing</general><general>Springer Nature</general><scope>FFUUA</scope><scope>3HK</scope></search><sort><creationdate>2019</creationdate><title>Unsupervised Feature Extraction – A CNN-Based Approach</title><author>Trosten, Daniel J. ; Sharma, Puneet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-93a8da1d8f84e05629ca10eb44bed6ba62be55a6c0dfed21b46a60aaaba4bd1c3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Maskinfag: 570</topic><topic>Mechanical engineering: 570</topic><topic>Technology: 500</topic><topic>Teknologi: 500</topic><topic>VDP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trosten, Daniel J.</creatorcontrib><creatorcontrib>Sharma, Puneet</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>NORA - Norwegian Open Research Archives</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trosten, Daniel J.</au><au>Sharma, Puneet</au><au>Unger, Jonas</au><au>Sintorn, Ida-Maria</au><au>Forssén, Per-Erik</au><au>Felsberg, Michael</au><au>Felsberg, Michael</au><au>Forssén, Per-Erik</au><au>Sintorn, Ida-Maria</au><au>Unger, Jonas</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Unsupervised Feature Extraction – A CNN-Based Approach</atitle><btitle>Image Analysis</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2019</date><risdate>2019</risdate><volume>11482</volume><spage>197</spage><epage>208</epage><pages>197-208</pages><issn>0302-9743</issn><issn>1611-3349</issn><eissn>1611-3349</eissn><isbn>9783030202040</isbn><isbn>3030202046</isbn><isbn>3030202054</isbn><isbn>9783030202057</isbn><eisbn>3030202054</eisbn><eisbn>9783030202057</eisbn><abstract>Working with large quantities of digital images can often lead to prohibitive computational challenges due to their massive number of pixels and high dimensionality. The extraction of compressed vectorial representations from images is therefore a task of vital importance in the field of computer vision. In this paper, we propose a new architecture for extracting such features from images in an unsupervised manner, which is based on convolutional neural networks. The model is referred to as the Unsupervised Convolutional Siamese Network (UCSN), and is trained to embed a set of images in a vector space, such that local distance structure in the space of images is approximately preserved. We compare the UCSN to several classical methods by using the extracted features as input to a classification system. Our results indicate that the UCSN produces vectorial representations that are suitable for classification purposes.</abstract><cop>Switzerland</cop><pub>Springer International Publishing AG</pub><doi>10.1007/978-3-030-20205-7_17</doi><oclcid>1105188720</oclcid><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Image Analysis, 2019, Vol.11482, p.197-208 |
issn | 0302-9743 1611-3349 1611-3349 |
language | eng |
recordid | cdi_cristin_nora_10037_17792 |
source | NORA - Norwegian Open Research Archives; Springer Books |
subjects | Maskinfag: 570 Mechanical engineering: 570 Technology: 500 Teknologi: 500 VDP |
title | Unsupervised Feature Extraction – A CNN-Based Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A31%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_crist&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Unsupervised%20Feature%20Extraction%20%E2%80%93%20A%20CNN-Based%20Approach&rft.btitle=Image%20Analysis&rft.au=Trosten,%20Daniel%20J.&rft.date=2019&rft.volume=11482&rft.spage=197&rft.epage=208&rft.pages=197-208&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783030202040&rft.isbn_list=3030202046&rft.isbn_list=3030202054&rft.isbn_list=9783030202057&rft_id=info:doi/10.1007/978-3-030-20205-7_17&rft_dat=%3Cproquest_crist%3EEBC5922326_190_208%3C/proquest_crist%3E%3Curl%3E%3C/url%3E&rft.eisbn=3030202054&rft.eisbn_list=9783030202057&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC5922326_190_208&rft_id=info:pmid/&rfr_iscdi=true |