From clear lakes to murky waters – tracing the functional response of high‐latitude lake communities to concurrent ‘greening’ and ‘browning’

Climate change and the intensification of land use practices are causing widespread eutrophication of subarctic lakes. The implications of this rapid change for lake ecosystem function remain poorly understood. To assess how freshwater communities respond to such profound changes in their habitat an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecology letters 2019-05, Vol.22 (5), p.807-816
Hauptverfasser: Hayden, B., Harrod, C., Thomas, S. M., Eloranta, A. P., Myllykangas, J.‐P., Siwertsson, A., Præbel, K., Knudsen, R., Amundsen, P.‐A., Kahilainen, K. K., Auer, Sonya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 816
container_issue 5
container_start_page 807
container_title Ecology letters
container_volume 22
creator Hayden, B.
Harrod, C.
Thomas, S. M.
Eloranta, A. P.
Myllykangas, J.‐P.
Siwertsson, A.
Præbel, K.
Knudsen, R.
Amundsen, P.‐A.
Kahilainen, K. K.
Auer, Sonya
description Climate change and the intensification of land use practices are causing widespread eutrophication of subarctic lakes. The implications of this rapid change for lake ecosystem function remain poorly understood. To assess how freshwater communities respond to such profound changes in their habitat and resource availability, we conducted a space‐for‐time analysis of food‐web structure in 30 lakes situated across a temperature‐productivity gradient equivalent to the predicted future climate of subarctic Europe (temperature +3°C, precipitation +30% and nutrient +45 μg L−1 total phosphorus). Along this gradient, we observed an increase in the assimilation of pelagic‐derived carbon from 25 to 75% throughout primary, secondary and tertiary consumers. This shift was overwhelmingly driven by the consumption of pelagic detritus by benthic primary consumers and was not accompanied by increased pelagic foraging by higher trophic level consumers. Our data also revealed a convergence of the carbon isotope ratios of pelagic and benthic food web endmembers in the warmest, most productive lakes indicating that the incorporation of terrestrial derived carbon into aquatic food webs increases as land use intensifies. These results, reflecting changes along a gradient characteristic of the predicted future environment throughout the subarctic, indicate that climate and land use driven eutrophication and browning are radically altering the function and fuelling of aquatic food webs in this biome.
doi_str_mv 10.1111/ele.13238
format Article
fullrecord <record><control><sourceid>proquest_crist</sourceid><recordid>TN_cdi_cristin_nora_10037_17368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2204502078</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4128-c324def2c94af8284c91c63ef7a1129a3e2de3298d9bd21e2896d0c456a265893</originalsourceid><addsrcrecordid>eNp1kc1OGzEURq0KVCh00RcAS111EfBfZjxLhEJbKRKbVmJnOZ47iWHGDrZHUXZ5hEps4PXyJHWYwI67uVefjo509SH0jZILmucSWrignHH5CR1TUdARYUIevN_87gh9ifGeEMqqkn5GR5yUFRdjfoyeb4LvsGlBB9zqB4g4edz14WGNVzpBiHi7ecIpaGPdHKcF4KZ3JlnvdIsDxKV3EbBv8MLOF9vNv1Ynm_oaXmXY-K7rnU128BrvTB8CuJStz_MA4LJ1u3nB2tW7aBb8ah-dosNGtxG-7vcJ-nsz-XP9azS9_fn7-mo6MoIyOTKciRoaZiqhG8mkMBU1BYem1DR_qzmwGjirZF3NakaByaqoiRHjQrNiLCt-gs4Hrwk2JuuU80ErSggvFS15ITPxfSCWwT_2EJO6933I_0fFGBFjwki5o368eXyMARq1DLbTYZ1dateSyi2p15Yye7Y39rMO6nfyrZYMXA7Ayraw_tikJtPJoPwPjSyiIA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2204502078</pqid></control><display><type>article</type><title>From clear lakes to murky waters – tracing the functional response of high‐latitude lake communities to concurrent ‘greening’ and ‘browning’</title><source>MEDLINE</source><source>NORA - Norwegian Open Research Archives</source><source>Wiley Journals</source><creator>Hayden, B. ; Harrod, C. ; Thomas, S. M. ; Eloranta, A. P. ; Myllykangas, J.‐P. ; Siwertsson, A. ; Præbel, K. ; Knudsen, R. ; Amundsen, P.‐A. ; Kahilainen, K. K. ; Auer, Sonya</creator><contributor>Auer, Sonya</contributor><creatorcontrib>Hayden, B. ; Harrod, C. ; Thomas, S. M. ; Eloranta, A. P. ; Myllykangas, J.‐P. ; Siwertsson, A. ; Præbel, K. ; Knudsen, R. ; Amundsen, P.‐A. ; Kahilainen, K. K. ; Auer, Sonya ; Auer, Sonya</creatorcontrib><description>Climate change and the intensification of land use practices are causing widespread eutrophication of subarctic lakes. The implications of this rapid change for lake ecosystem function remain poorly understood. To assess how freshwater communities respond to such profound changes in their habitat and resource availability, we conducted a space‐for‐time analysis of food‐web structure in 30 lakes situated across a temperature‐productivity gradient equivalent to the predicted future climate of subarctic Europe (temperature +3°C, precipitation +30% and nutrient +45 μg L−1 total phosphorus). Along this gradient, we observed an increase in the assimilation of pelagic‐derived carbon from 25 to 75% throughout primary, secondary and tertiary consumers. This shift was overwhelmingly driven by the consumption of pelagic detritus by benthic primary consumers and was not accompanied by increased pelagic foraging by higher trophic level consumers. Our data also revealed a convergence of the carbon isotope ratios of pelagic and benthic food web endmembers in the warmest, most productive lakes indicating that the incorporation of terrestrial derived carbon into aquatic food webs increases as land use intensifies. These results, reflecting changes along a gradient characteristic of the predicted future environment throughout the subarctic, indicate that climate and land use driven eutrophication and browning are radically altering the function and fuelling of aquatic food webs in this biome.</description><identifier>ISSN: 1461-023X</identifier><identifier>ISSN: 1461-0248</identifier><identifier>EISSN: 1461-0248</identifier><identifier>DOI: 10.1111/ele.13238</identifier><identifier>PMID: 30793453</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Aquatic ecosystems ; Browning ; Carbon ; Carbon isotopes ; Climate ; Climate Change ; Communities ; Consumers ; cryptic energetic pathways ; Detritus ; ecological stable states ; Ecosystem ; Ecosystem assessment ; Environmental changes ; Europe ; Eutrophication ; Food analysis ; Food Chain ; Food chains ; Food webs ; Foraging habitats ; Greening ; habitat coupling ; Isotope ratios ; Lakes ; Land use ; Matematikk og naturvitenskap: 400 ; Mathematics and natural scienses: 400 ; Phosphorus ; Resource availability ; space‐for‐time ; stable isotope analysis ; Temperature ; Terrestrial environments ; Trophic levels ; trophic niche ; VDP ; Zoologiske og botaniske fag: 480 ; Zoology and botany: 480</subject><ispartof>Ecology letters, 2019-05, Vol.22 (5), p.807-816</ispartof><rights>2019 John Wiley &amp; Sons Ltd/CNRS</rights><rights>2019 John Wiley &amp; Sons Ltd/CNRS.</rights><rights>Copyright © 2019 John Wiley &amp; Sons Ltd/CNRS</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4128-c324def2c94af8284c91c63ef7a1129a3e2de3298d9bd21e2896d0c456a265893</citedby><cites>FETCH-LOGICAL-c4128-c324def2c94af8284c91c63ef7a1129a3e2de3298d9bd21e2896d0c456a265893</cites><orcidid>0000-0002-8524-7373 ; 0000-0002-5353-1556 ; 0000-0002-1539-014X ; 0000-0002-8893-0135 ; 0000-0001-5125-691X ; 0000-0002-0681-1854 ; 0000-0002-2203-8216</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fele.13238$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fele.13238$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,26567,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30793453$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Auer, Sonya</contributor><creatorcontrib>Hayden, B.</creatorcontrib><creatorcontrib>Harrod, C.</creatorcontrib><creatorcontrib>Thomas, S. M.</creatorcontrib><creatorcontrib>Eloranta, A. P.</creatorcontrib><creatorcontrib>Myllykangas, J.‐P.</creatorcontrib><creatorcontrib>Siwertsson, A.</creatorcontrib><creatorcontrib>Præbel, K.</creatorcontrib><creatorcontrib>Knudsen, R.</creatorcontrib><creatorcontrib>Amundsen, P.‐A.</creatorcontrib><creatorcontrib>Kahilainen, K. K.</creatorcontrib><creatorcontrib>Auer, Sonya</creatorcontrib><title>From clear lakes to murky waters – tracing the functional response of high‐latitude lake communities to concurrent ‘greening’ and ‘browning’</title><title>Ecology letters</title><addtitle>Ecol Lett</addtitle><description>Climate change and the intensification of land use practices are causing widespread eutrophication of subarctic lakes. The implications of this rapid change for lake ecosystem function remain poorly understood. To assess how freshwater communities respond to such profound changes in their habitat and resource availability, we conducted a space‐for‐time analysis of food‐web structure in 30 lakes situated across a temperature‐productivity gradient equivalent to the predicted future climate of subarctic Europe (temperature +3°C, precipitation +30% and nutrient +45 μg L−1 total phosphorus). Along this gradient, we observed an increase in the assimilation of pelagic‐derived carbon from 25 to 75% throughout primary, secondary and tertiary consumers. This shift was overwhelmingly driven by the consumption of pelagic detritus by benthic primary consumers and was not accompanied by increased pelagic foraging by higher trophic level consumers. Our data also revealed a convergence of the carbon isotope ratios of pelagic and benthic food web endmembers in the warmest, most productive lakes indicating that the incorporation of terrestrial derived carbon into aquatic food webs increases as land use intensifies. These results, reflecting changes along a gradient characteristic of the predicted future environment throughout the subarctic, indicate that climate and land use driven eutrophication and browning are radically altering the function and fuelling of aquatic food webs in this biome.</description><subject>Aquatic ecosystems</subject><subject>Browning</subject><subject>Carbon</subject><subject>Carbon isotopes</subject><subject>Climate</subject><subject>Climate Change</subject><subject>Communities</subject><subject>Consumers</subject><subject>cryptic energetic pathways</subject><subject>Detritus</subject><subject>ecological stable states</subject><subject>Ecosystem</subject><subject>Ecosystem assessment</subject><subject>Environmental changes</subject><subject>Europe</subject><subject>Eutrophication</subject><subject>Food analysis</subject><subject>Food Chain</subject><subject>Food chains</subject><subject>Food webs</subject><subject>Foraging habitats</subject><subject>Greening</subject><subject>habitat coupling</subject><subject>Isotope ratios</subject><subject>Lakes</subject><subject>Land use</subject><subject>Matematikk og naturvitenskap: 400</subject><subject>Mathematics and natural scienses: 400</subject><subject>Phosphorus</subject><subject>Resource availability</subject><subject>space‐for‐time</subject><subject>stable isotope analysis</subject><subject>Temperature</subject><subject>Terrestrial environments</subject><subject>Trophic levels</subject><subject>trophic niche</subject><subject>VDP</subject><subject>Zoologiske og botaniske fag: 480</subject><subject>Zoology and botany: 480</subject><issn>1461-023X</issn><issn>1461-0248</issn><issn>1461-0248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>3HK</sourceid><recordid>eNp1kc1OGzEURq0KVCh00RcAS111EfBfZjxLhEJbKRKbVmJnOZ47iWHGDrZHUXZ5hEps4PXyJHWYwI67uVefjo509SH0jZILmucSWrignHH5CR1TUdARYUIevN_87gh9ifGeEMqqkn5GR5yUFRdjfoyeb4LvsGlBB9zqB4g4edz14WGNVzpBiHi7ecIpaGPdHKcF4KZ3JlnvdIsDxKV3EbBv8MLOF9vNv1Ynm_oaXmXY-K7rnU128BrvTB8CuJStz_MA4LJ1u3nB2tW7aBb8ah-dosNGtxG-7vcJ-nsz-XP9azS9_fn7-mo6MoIyOTKciRoaZiqhG8mkMBU1BYem1DR_qzmwGjirZF3NakaByaqoiRHjQrNiLCt-gs4Hrwk2JuuU80ErSggvFS15ITPxfSCWwT_2EJO6933I_0fFGBFjwki5o368eXyMARq1DLbTYZ1dateSyi2p15Yye7Y39rMO6nfyrZYMXA7Ayraw_tikJtPJoPwPjSyiIA</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Hayden, B.</creator><creator>Harrod, C.</creator><creator>Thomas, S. M.</creator><creator>Eloranta, A. P.</creator><creator>Myllykangas, J.‐P.</creator><creator>Siwertsson, A.</creator><creator>Præbel, K.</creator><creator>Knudsen, R.</creator><creator>Amundsen, P.‐A.</creator><creator>Kahilainen, K. K.</creator><creator>Auer, Sonya</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>7U9</scope><scope>C1K</scope><scope>H94</scope><scope>M7N</scope><scope>3HK</scope><orcidid>https://orcid.org/0000-0002-8524-7373</orcidid><orcidid>https://orcid.org/0000-0002-5353-1556</orcidid><orcidid>https://orcid.org/0000-0002-1539-014X</orcidid><orcidid>https://orcid.org/0000-0002-8893-0135</orcidid><orcidid>https://orcid.org/0000-0001-5125-691X</orcidid><orcidid>https://orcid.org/0000-0002-0681-1854</orcidid><orcidid>https://orcid.org/0000-0002-2203-8216</orcidid></search><sort><creationdate>201905</creationdate><title>From clear lakes to murky waters – tracing the functional response of high‐latitude lake communities to concurrent ‘greening’ and ‘browning’</title><author>Hayden, B. ; Harrod, C. ; Thomas, S. M. ; Eloranta, A. P. ; Myllykangas, J.‐P. ; Siwertsson, A. ; Præbel, K. ; Knudsen, R. ; Amundsen, P.‐A. ; Kahilainen, K. K. ; Auer, Sonya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4128-c324def2c94af8284c91c63ef7a1129a3e2de3298d9bd21e2896d0c456a265893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aquatic ecosystems</topic><topic>Browning</topic><topic>Carbon</topic><topic>Carbon isotopes</topic><topic>Climate</topic><topic>Climate Change</topic><topic>Communities</topic><topic>Consumers</topic><topic>cryptic energetic pathways</topic><topic>Detritus</topic><topic>ecological stable states</topic><topic>Ecosystem</topic><topic>Ecosystem assessment</topic><topic>Environmental changes</topic><topic>Europe</topic><topic>Eutrophication</topic><topic>Food analysis</topic><topic>Food Chain</topic><topic>Food chains</topic><topic>Food webs</topic><topic>Foraging habitats</topic><topic>Greening</topic><topic>habitat coupling</topic><topic>Isotope ratios</topic><topic>Lakes</topic><topic>Land use</topic><topic>Matematikk og naturvitenskap: 400</topic><topic>Mathematics and natural scienses: 400</topic><topic>Phosphorus</topic><topic>Resource availability</topic><topic>space‐for‐time</topic><topic>stable isotope analysis</topic><topic>Temperature</topic><topic>Terrestrial environments</topic><topic>Trophic levels</topic><topic>trophic niche</topic><topic>VDP</topic><topic>Zoologiske og botaniske fag: 480</topic><topic>Zoology and botany: 480</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hayden, B.</creatorcontrib><creatorcontrib>Harrod, C.</creatorcontrib><creatorcontrib>Thomas, S. M.</creatorcontrib><creatorcontrib>Eloranta, A. P.</creatorcontrib><creatorcontrib>Myllykangas, J.‐P.</creatorcontrib><creatorcontrib>Siwertsson, A.</creatorcontrib><creatorcontrib>Præbel, K.</creatorcontrib><creatorcontrib>Knudsen, R.</creatorcontrib><creatorcontrib>Amundsen, P.‐A.</creatorcontrib><creatorcontrib>Kahilainen, K. K.</creatorcontrib><creatorcontrib>Auer, Sonya</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Virology and AIDS Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>NORA - Norwegian Open Research Archives</collection><jtitle>Ecology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hayden, B.</au><au>Harrod, C.</au><au>Thomas, S. M.</au><au>Eloranta, A. P.</au><au>Myllykangas, J.‐P.</au><au>Siwertsson, A.</au><au>Præbel, K.</au><au>Knudsen, R.</au><au>Amundsen, P.‐A.</au><au>Kahilainen, K. K.</au><au>Auer, Sonya</au><au>Auer, Sonya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From clear lakes to murky waters – tracing the functional response of high‐latitude lake communities to concurrent ‘greening’ and ‘browning’</atitle><jtitle>Ecology letters</jtitle><addtitle>Ecol Lett</addtitle><date>2019-05</date><risdate>2019</risdate><volume>22</volume><issue>5</issue><spage>807</spage><epage>816</epage><pages>807-816</pages><issn>1461-023X</issn><issn>1461-0248</issn><eissn>1461-0248</eissn><abstract>Climate change and the intensification of land use practices are causing widespread eutrophication of subarctic lakes. The implications of this rapid change for lake ecosystem function remain poorly understood. To assess how freshwater communities respond to such profound changes in their habitat and resource availability, we conducted a space‐for‐time analysis of food‐web structure in 30 lakes situated across a temperature‐productivity gradient equivalent to the predicted future climate of subarctic Europe (temperature +3°C, precipitation +30% and nutrient +45 μg L−1 total phosphorus). Along this gradient, we observed an increase in the assimilation of pelagic‐derived carbon from 25 to 75% throughout primary, secondary and tertiary consumers. This shift was overwhelmingly driven by the consumption of pelagic detritus by benthic primary consumers and was not accompanied by increased pelagic foraging by higher trophic level consumers. Our data also revealed a convergence of the carbon isotope ratios of pelagic and benthic food web endmembers in the warmest, most productive lakes indicating that the incorporation of terrestrial derived carbon into aquatic food webs increases as land use intensifies. These results, reflecting changes along a gradient characteristic of the predicted future environment throughout the subarctic, indicate that climate and land use driven eutrophication and browning are radically altering the function and fuelling of aquatic food webs in this biome.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>30793453</pmid><doi>10.1111/ele.13238</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8524-7373</orcidid><orcidid>https://orcid.org/0000-0002-5353-1556</orcidid><orcidid>https://orcid.org/0000-0002-1539-014X</orcidid><orcidid>https://orcid.org/0000-0002-8893-0135</orcidid><orcidid>https://orcid.org/0000-0001-5125-691X</orcidid><orcidid>https://orcid.org/0000-0002-0681-1854</orcidid><orcidid>https://orcid.org/0000-0002-2203-8216</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1461-023X
ispartof Ecology letters, 2019-05, Vol.22 (5), p.807-816
issn 1461-023X
1461-0248
1461-0248
language eng
recordid cdi_cristin_nora_10037_17368
source MEDLINE; NORA - Norwegian Open Research Archives; Wiley Journals
subjects Aquatic ecosystems
Browning
Carbon
Carbon isotopes
Climate
Climate Change
Communities
Consumers
cryptic energetic pathways
Detritus
ecological stable states
Ecosystem
Ecosystem assessment
Environmental changes
Europe
Eutrophication
Food analysis
Food Chain
Food chains
Food webs
Foraging habitats
Greening
habitat coupling
Isotope ratios
Lakes
Land use
Matematikk og naturvitenskap: 400
Mathematics and natural scienses: 400
Phosphorus
Resource availability
space‐for‐time
stable isotope analysis
Temperature
Terrestrial environments
Trophic levels
trophic niche
VDP
Zoologiske og botaniske fag: 480
Zoology and botany: 480
title From clear lakes to murky waters – tracing the functional response of high‐latitude lake communities to concurrent ‘greening’ and ‘browning’
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A13%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_crist&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20clear%20lakes%20to%20murky%20waters%20%E2%80%93%20tracing%20the%20functional%20response%20of%20high%E2%80%90latitude%20lake%20communities%20to%20concurrent%20%E2%80%98greening%E2%80%99%20and%20%E2%80%98browning%E2%80%99&rft.jtitle=Ecology%20letters&rft.au=Hayden,%20B.&rft.date=2019-05&rft.volume=22&rft.issue=5&rft.spage=807&rft.epage=816&rft.pages=807-816&rft.issn=1461-023X&rft.eissn=1461-0248&rft_id=info:doi/10.1111/ele.13238&rft_dat=%3Cproquest_crist%3E2204502078%3C/proquest_crist%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2204502078&rft_id=info:pmid/30793453&rfr_iscdi=true