Shallow methane hydrate system controls ongoing, downslope sediment transport in a low-velocity active submarine landslide complex, Hikurangi Margin, New Zealand

Morphological and seismic data from a submarine landslide complex east of New Zealand indicate flow‐like deformation within gas hydrate‐bearing sediment. This “creeping” deformation occurs immediately downslope of where the base of gas hydrate stability reaches the seafloor, suggesting involvement o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geochemistry, geophysics, geosystems : G3 geophysics, geosystems : G3, 2014-11, Vol.15 (11), p.4137-4156
Hauptverfasser: Mountjoy, Joshu J., Pecher, Ingo, Henrys, Stuart, Crutchley, Gareth, Barnes, Philip M., Plaza-Faverola, Andreia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4156
container_issue 11
container_start_page 4137
container_title Geochemistry, geophysics, geosystems : G3
container_volume 15
creator Mountjoy, Joshu J.
Pecher, Ingo
Henrys, Stuart
Crutchley, Gareth
Barnes, Philip M.
Plaza-Faverola, Andreia
description Morphological and seismic data from a submarine landslide complex east of New Zealand indicate flow‐like deformation within gas hydrate‐bearing sediment. This “creeping” deformation occurs immediately downslope of where the base of gas hydrate stability reaches the seafloor, suggesting involvement of gas hydrates. We present evidence that, contrary to conventional views, gas hydrates can directly destabilize the seafloor. Three mechanisms could explain how the shallow gas hydrate system could control these landslides. (1) Gas hydrate dissociation could result in excess pore pressure within the upper reaches of the landslide. (2) Overpressure below low‐permeability gas hydrate‐bearing sediments could cause hydrofracturing in the gas hydrate zone valving excess pore pressure into the landslide body. (3) Gas hydrate‐bearing sediment could exhibit time‐dependent plastic deformation enabling glacial‐style deformation. We favor the final hypothesis that the landslides are actually creeping seafloor glaciers. The viability of rheologically controlled deformation of a hydrate sediment mix is supported by recent laboratory observations of time‐dependent deformation behavior of gas hydrate‐bearing sands. The controlling hydrate is likely to be strongly dependent on formation controls and intersediment hydrate morphology. Our results constitute a paradigm shift for evaluating the effect of gas hydrates on seafloor strength which, given the widespread occurrence of gas hydrates in the submarine environment, may require a reevaluation of slope stability following future climate‐forced variation in bottom‐water temperature. Key Points Low‐velocity active landslides are proposed to occur on the seafloor Gas hydrates provide a perturbation mechanism for ongoing landslide mobility We propose an active, mixed hydrate‐sediment seafloor glacier
doi_str_mv 10.1002/2014GC005379
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_cristin_nora_10037_13055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3570826881</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5562-81e998682214ac7f693d25710aa4d4695ca55f81f9ac594e92aa35ff9e7d89463</originalsourceid><addsrcrecordid>eNqN0T9v1DAYBvAIgUQpbOxYYmG4gP_EcTzCtU0RpQyAkFgsk7y5c-vYqe30mo_DN8XHIVQxMdnDz4-f1y6K5wS_JhjTNxSTql1jzJmQD4ojwikvKabi4b394-JJjFc4S86bo-Ln56221u_QCGmrHaDt0gedAMUlJhhR510K3kbk3cYbt1mh3u9ctH7KBHozgksoBe3i5ENCxiGNclx5C9Z3Ji1Id8ncZjv_GHUw-QKrXR-t6SFnj5OFuxU6N9dzjtgY9FGHjXErdAk79B303j4tHg3aRnj2Zz0uvp6dflmflxef2vfrtxel5rymZUNAyqZuKCWV7sRQS9ZTLgjWuuqrWvIuu6Ehg9QdlxVIqjXjwyBB9I2sanZcvDjkdsHEZJxyPmiV35UJRRjmPItXBzEFfzNDTGo0sQObW4KfoyK1EM2-hPwPWuOKESxppi__oVd-Di6PmlXVcFpjvm_HDmpnLCxqCiY_55Lr7RtSdf_nVdu2pxTz39nl4VSeCO7-ntLhWtWCCa6-XbaK8Q_rk5N3Z6plvwB7trGz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1648526056</pqid></control><display><type>article</type><title>Shallow methane hydrate system controls ongoing, downslope sediment transport in a low-velocity active submarine landslide complex, Hikurangi Margin, New Zealand</title><source>Wiley Online Library Open Access</source><creator>Mountjoy, Joshu J. ; Pecher, Ingo ; Henrys, Stuart ; Crutchley, Gareth ; Barnes, Philip M. ; Plaza-Faverola, Andreia</creator><creatorcontrib>Mountjoy, Joshu J. ; Pecher, Ingo ; Henrys, Stuart ; Crutchley, Gareth ; Barnes, Philip M. ; Plaza-Faverola, Andreia</creatorcontrib><description>Morphological and seismic data from a submarine landslide complex east of New Zealand indicate flow‐like deformation within gas hydrate‐bearing sediment. This “creeping” deformation occurs immediately downslope of where the base of gas hydrate stability reaches the seafloor, suggesting involvement of gas hydrates. We present evidence that, contrary to conventional views, gas hydrates can directly destabilize the seafloor. Three mechanisms could explain how the shallow gas hydrate system could control these landslides. (1) Gas hydrate dissociation could result in excess pore pressure within the upper reaches of the landslide. (2) Overpressure below low‐permeability gas hydrate‐bearing sediments could cause hydrofracturing in the gas hydrate zone valving excess pore pressure into the landslide body. (3) Gas hydrate‐bearing sediment could exhibit time‐dependent plastic deformation enabling glacial‐style deformation. We favor the final hypothesis that the landslides are actually creeping seafloor glaciers. The viability of rheologically controlled deformation of a hydrate sediment mix is supported by recent laboratory observations of time‐dependent deformation behavior of gas hydrate‐bearing sands. The controlling hydrate is likely to be strongly dependent on formation controls and intersediment hydrate morphology. Our results constitute a paradigm shift for evaluating the effect of gas hydrates on seafloor strength which, given the widespread occurrence of gas hydrates in the submarine environment, may require a reevaluation of slope stability following future climate‐forced variation in bottom‐water temperature. Key Points Low‐velocity active landslides are proposed to occur on the seafloor Gas hydrates provide a perturbation mechanism for ongoing landslide mobility We propose an active, mixed hydrate‐sediment seafloor glacier</description><identifier>ISSN: 1525-2027</identifier><identifier>EISSN: 1525-2027</identifier><identifier>DOI: 10.1002/2014GC005379</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>active landslide ; Control equipment ; Creep (materials) ; Deformation ; Gas hydrates ; Geofag: 450 ; Geosciences: 450 ; Glaciers ; Hydrates ; Landslides ; Landslides &amp; mudslides ; Marine ; Matematikk og Naturvitenskap: 400 ; Mathematics and natural science: 400 ; Methane ; Ocean floor ; Pore pressure ; Sea beds ; Sediment transport ; Sediments ; Slope stability ; submarine landslide ; VDP ; Water temperature</subject><ispartof>Geochemistry, geophysics, geosystems : G3, 2014-11, Vol.15 (11), p.4137-4156</ispartof><rights>2014. American Geophysical Union. All Rights Reserved.</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2014GC005379$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2014GC005379$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,11562,26567,27924,27925,45574,45575,46052,46476</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1002%2F2014GC005379$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Mountjoy, Joshu J.</creatorcontrib><creatorcontrib>Pecher, Ingo</creatorcontrib><creatorcontrib>Henrys, Stuart</creatorcontrib><creatorcontrib>Crutchley, Gareth</creatorcontrib><creatorcontrib>Barnes, Philip M.</creatorcontrib><creatorcontrib>Plaza-Faverola, Andreia</creatorcontrib><title>Shallow methane hydrate system controls ongoing, downslope sediment transport in a low-velocity active submarine landslide complex, Hikurangi Margin, New Zealand</title><title>Geochemistry, geophysics, geosystems : G3</title><addtitle>Geochem. Geophys. Geosyst</addtitle><description>Morphological and seismic data from a submarine landslide complex east of New Zealand indicate flow‐like deformation within gas hydrate‐bearing sediment. This “creeping” deformation occurs immediately downslope of where the base of gas hydrate stability reaches the seafloor, suggesting involvement of gas hydrates. We present evidence that, contrary to conventional views, gas hydrates can directly destabilize the seafloor. Three mechanisms could explain how the shallow gas hydrate system could control these landslides. (1) Gas hydrate dissociation could result in excess pore pressure within the upper reaches of the landslide. (2) Overpressure below low‐permeability gas hydrate‐bearing sediments could cause hydrofracturing in the gas hydrate zone valving excess pore pressure into the landslide body. (3) Gas hydrate‐bearing sediment could exhibit time‐dependent plastic deformation enabling glacial‐style deformation. We favor the final hypothesis that the landslides are actually creeping seafloor glaciers. The viability of rheologically controlled deformation of a hydrate sediment mix is supported by recent laboratory observations of time‐dependent deformation behavior of gas hydrate‐bearing sands. The controlling hydrate is likely to be strongly dependent on formation controls and intersediment hydrate morphology. Our results constitute a paradigm shift for evaluating the effect of gas hydrates on seafloor strength which, given the widespread occurrence of gas hydrates in the submarine environment, may require a reevaluation of slope stability following future climate‐forced variation in bottom‐water temperature. Key Points Low‐velocity active landslides are proposed to occur on the seafloor Gas hydrates provide a perturbation mechanism for ongoing landslide mobility We propose an active, mixed hydrate‐sediment seafloor glacier</description><subject>active landslide</subject><subject>Control equipment</subject><subject>Creep (materials)</subject><subject>Deformation</subject><subject>Gas hydrates</subject><subject>Geofag: 450</subject><subject>Geosciences: 450</subject><subject>Glaciers</subject><subject>Hydrates</subject><subject>Landslides</subject><subject>Landslides &amp; mudslides</subject><subject>Marine</subject><subject>Matematikk og Naturvitenskap: 400</subject><subject>Mathematics and natural science: 400</subject><subject>Methane</subject><subject>Ocean floor</subject><subject>Pore pressure</subject><subject>Sea beds</subject><subject>Sediment transport</subject><subject>Sediments</subject><subject>Slope stability</subject><subject>submarine landslide</subject><subject>VDP</subject><subject>Water temperature</subject><issn>1525-2027</issn><issn>1525-2027</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNqN0T9v1DAYBvAIgUQpbOxYYmG4gP_EcTzCtU0RpQyAkFgsk7y5c-vYqe30mo_DN8XHIVQxMdnDz4-f1y6K5wS_JhjTNxSTql1jzJmQD4ojwikvKabi4b394-JJjFc4S86bo-Ln56221u_QCGmrHaDt0gedAMUlJhhR510K3kbk3cYbt1mh3u9ctH7KBHozgksoBe3i5ENCxiGNclx5C9Z3Ji1Id8ncZjv_GHUw-QKrXR-t6SFnj5OFuxU6N9dzjtgY9FGHjXErdAk79B303j4tHg3aRnj2Zz0uvp6dflmflxef2vfrtxel5rymZUNAyqZuKCWV7sRQS9ZTLgjWuuqrWvIuu6Ehg9QdlxVIqjXjwyBB9I2sanZcvDjkdsHEZJxyPmiV35UJRRjmPItXBzEFfzNDTGo0sQObW4KfoyK1EM2-hPwPWuOKESxppi__oVd-Di6PmlXVcFpjvm_HDmpnLCxqCiY_55Lr7RtSdf_nVdu2pxTz39nl4VSeCO7-ntLhWtWCCa6-XbaK8Q_rk5N3Z6plvwB7trGz</recordid><startdate>201411</startdate><enddate>201411</enddate><creator>Mountjoy, Joshu J.</creator><creator>Pecher, Ingo</creator><creator>Henrys, Stuart</creator><creator>Crutchley, Gareth</creator><creator>Barnes, Philip M.</creator><creator>Plaza-Faverola, Andreia</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons, Inc</general><general>American Geophysical Union (AGU)</general><scope>BSCLL</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>3HK</scope></search><sort><creationdate>201411</creationdate><title>Shallow methane hydrate system controls ongoing, downslope sediment transport in a low-velocity active submarine landslide complex, Hikurangi Margin, New Zealand</title><author>Mountjoy, Joshu J. ; Pecher, Ingo ; Henrys, Stuart ; Crutchley, Gareth ; Barnes, Philip M. ; Plaza-Faverola, Andreia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5562-81e998682214ac7f693d25710aa4d4695ca55f81f9ac594e92aa35ff9e7d89463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>active landslide</topic><topic>Control equipment</topic><topic>Creep (materials)</topic><topic>Deformation</topic><topic>Gas hydrates</topic><topic>Geofag: 450</topic><topic>Geosciences: 450</topic><topic>Glaciers</topic><topic>Hydrates</topic><topic>Landslides</topic><topic>Landslides &amp; mudslides</topic><topic>Marine</topic><topic>Matematikk og Naturvitenskap: 400</topic><topic>Mathematics and natural science: 400</topic><topic>Methane</topic><topic>Ocean floor</topic><topic>Pore pressure</topic><topic>Sea beds</topic><topic>Sediment transport</topic><topic>Sediments</topic><topic>Slope stability</topic><topic>submarine landslide</topic><topic>VDP</topic><topic>Water temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mountjoy, Joshu J.</creatorcontrib><creatorcontrib>Pecher, Ingo</creatorcontrib><creatorcontrib>Henrys, Stuart</creatorcontrib><creatorcontrib>Crutchley, Gareth</creatorcontrib><creatorcontrib>Barnes, Philip M.</creatorcontrib><creatorcontrib>Plaza-Faverola, Andreia</creatorcontrib><collection>Istex</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>NORA - Norwegian Open Research Archives</collection><jtitle>Geochemistry, geophysics, geosystems : G3</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mountjoy, Joshu J.</au><au>Pecher, Ingo</au><au>Henrys, Stuart</au><au>Crutchley, Gareth</au><au>Barnes, Philip M.</au><au>Plaza-Faverola, Andreia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shallow methane hydrate system controls ongoing, downslope sediment transport in a low-velocity active submarine landslide complex, Hikurangi Margin, New Zealand</atitle><jtitle>Geochemistry, geophysics, geosystems : G3</jtitle><addtitle>Geochem. Geophys. Geosyst</addtitle><date>2014-11</date><risdate>2014</risdate><volume>15</volume><issue>11</issue><spage>4137</spage><epage>4156</epage><pages>4137-4156</pages><issn>1525-2027</issn><eissn>1525-2027</eissn><abstract>Morphological and seismic data from a submarine landslide complex east of New Zealand indicate flow‐like deformation within gas hydrate‐bearing sediment. This “creeping” deformation occurs immediately downslope of where the base of gas hydrate stability reaches the seafloor, suggesting involvement of gas hydrates. We present evidence that, contrary to conventional views, gas hydrates can directly destabilize the seafloor. Three mechanisms could explain how the shallow gas hydrate system could control these landslides. (1) Gas hydrate dissociation could result in excess pore pressure within the upper reaches of the landslide. (2) Overpressure below low‐permeability gas hydrate‐bearing sediments could cause hydrofracturing in the gas hydrate zone valving excess pore pressure into the landslide body. (3) Gas hydrate‐bearing sediment could exhibit time‐dependent plastic deformation enabling glacial‐style deformation. We favor the final hypothesis that the landslides are actually creeping seafloor glaciers. The viability of rheologically controlled deformation of a hydrate sediment mix is supported by recent laboratory observations of time‐dependent deformation behavior of gas hydrate‐bearing sands. The controlling hydrate is likely to be strongly dependent on formation controls and intersediment hydrate morphology. Our results constitute a paradigm shift for evaluating the effect of gas hydrates on seafloor strength which, given the widespread occurrence of gas hydrates in the submarine environment, may require a reevaluation of slope stability following future climate‐forced variation in bottom‐water temperature. Key Points Low‐velocity active landslides are proposed to occur on the seafloor Gas hydrates provide a perturbation mechanism for ongoing landslide mobility We propose an active, mixed hydrate‐sediment seafloor glacier</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2014GC005379</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1525-2027
ispartof Geochemistry, geophysics, geosystems : G3, 2014-11, Vol.15 (11), p.4137-4156
issn 1525-2027
1525-2027
language eng
recordid cdi_cristin_nora_10037_13055
source Wiley Online Library Open Access
subjects active landslide
Control equipment
Creep (materials)
Deformation
Gas hydrates
Geofag: 450
Geosciences: 450
Glaciers
Hydrates
Landslides
Landslides & mudslides
Marine
Matematikk og Naturvitenskap: 400
Mathematics and natural science: 400
Methane
Ocean floor
Pore pressure
Sea beds
Sediment transport
Sediments
Slope stability
submarine landslide
VDP
Water temperature
title Shallow methane hydrate system controls ongoing, downslope sediment transport in a low-velocity active submarine landslide complex, Hikurangi Margin, New Zealand
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A42%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shallow%20methane%20hydrate%20system%20controls%20ongoing,%20downslope%20sediment%20transport%20in%20a%20low-velocity%20active%20submarine%20landslide%20complex,%20Hikurangi%20Margin,%20New%20Zealand&rft.jtitle=Geochemistry,%20geophysics,%20geosystems%20:%20G3&rft.au=Mountjoy,%20Joshu%20J.&rft.date=2014-11&rft.volume=15&rft.issue=11&rft.spage=4137&rft.epage=4156&rft.pages=4137-4156&rft.issn=1525-2027&rft.eissn=1525-2027&rft_id=info:doi/10.1002/2014GC005379&rft_dat=%3Cproquest_24P%3E3570826881%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1648526056&rft_id=info:pmid/&rfr_iscdi=true