MATRIX FACTORIZATION OF MULTIVARIATE BERNSTEIN POLYNOMIALS

Ordinary univariate Bernstein polynomials can be represented in matrix form using factor matrices. In this paper we present the definition and basic properties of such factor matrices extended from the univariate case to the general case of arbitrary number of variables by using barycentric coordinat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of pure and applied mathematics : IJPAM 2015, Vol.103 (4)
1. Verfasser: Dalmo, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title International journal of pure and applied mathematics : IJPAM
container_volume 103
creator Dalmo, R.
description Ordinary univariate Bernstein polynomials can be represented in matrix form using factor matrices. In this paper we present the definition and basic properties of such factor matrices extended from the univariate case to the general case of arbitrary number of variables by using barycentric coordinates in the hyper-simplices of respective dimension. The main results in the paper are related to the design of an iterative algorithm for fast convex computation of multivariate Bernstein polynomials based on sparse-matrix factorization. In the process of derivation of this algorithm, we investigate some properties of the factorization, including symmetry, commutativity and differentiability of the factor matrices, and address the relevance of this factorization to the de Casteljau algorithm for evaluating curves and surfaces on B´ezier form. A set of representative examples is provided, including a geometric interpretation of the de Casteljau algorithm, and representation by factor matrices of multivariate surfaces and their derivatives in B´ezier form. Another new result is the observation that inverting the order of steps of a part of the new factorization algorithm provides a new, matrix-based, algebraic representation of a multivariate generalization of a special case of the de Boor-Cox computational algorithm.
doi_str_mv 10.12732/ijpam.v103i4.12
format Article
fullrecord <record><control><sourceid>crossref_crist</sourceid><recordid>TN_cdi_cristin_nora_10037_11999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_12732_ijpam_v103i4_12</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2242-7f1480e5daa953e9b4d100486ee37640c07be3a998633dc6f6244dc1625e0be63</originalsourceid><addsrcrecordid>eNo1kF1LwzAUhoMoOObuvbN_oDPJSdPGuzg6DfRDukzUm5C2KXS4D1oR_PeGTs_NObw8vAcehG4JXhIaA73vdye7X34TDD3z0QWaESAsBBDR5XSTMMEJvkaLcdxhP0wQD8_QQy51pd6CtVzpslIfUquyCMp1kG8zrV5lpaROg8e0KjY6VUXwUmbvRZkrmW1u0FVnP0e3-NtztF2nevUcZuWTWsksbChlNIw7whLsotZaEYETNWuJ_59w5yDmDDc4rh1YIRIO0Da845SxtiGcRg7XjsMc3Z17m6Efv_qDORwHa3wHxIYQIYQn8D9xHMfBdeY09Hs7_HjKTILMJMicBfkIfgHHzFMD</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>MATRIX FACTORIZATION OF MULTIVARIATE BERNSTEIN POLYNOMIALS</title><source>NORA - Norwegian Open Research Archives</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Dalmo, R.</creator><creatorcontrib>Dalmo, R.</creatorcontrib><description>Ordinary univariate Bernstein polynomials can be represented in matrix form using factor matrices. In this paper we present the definition and basic properties of such factor matrices extended from the univariate case to the general case of arbitrary number of variables by using barycentric coordinates in the hyper-simplices of respective dimension. The main results in the paper are related to the design of an iterative algorithm for fast convex computation of multivariate Bernstein polynomials based on sparse-matrix factorization. In the process of derivation of this algorithm, we investigate some properties of the factorization, including symmetry, commutativity and differentiability of the factor matrices, and address the relevance of this factorization to the de Casteljau algorithm for evaluating curves and surfaces on B´ezier form. A set of representative examples is provided, including a geometric interpretation of the de Casteljau algorithm, and representation by factor matrices of multivariate surfaces and their derivatives in B´ezier form. Another new result is the observation that inverting the order of steps of a part of the new factorization algorithm provides a new, matrix-based, algebraic representation of a multivariate generalization of a special case of the de Boor-Cox computational algorithm.</description><identifier>ISSN: 1311-8080</identifier><identifier>ISSN: 1314-3395</identifier><identifier>EISSN: 1314-3395</identifier><identifier>DOI: 10.12732/ijpam.v103i4.12</identifier><language>eng</language><subject>Mathematics and natural science: 400 ; VDP</subject><ispartof>International journal of pure and applied mathematics : IJPAM, 2015, Vol.103 (4)</ispartof><rights>info:eu-repo/semantics/openAccess</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2242-7f1480e5daa953e9b4d100486ee37640c07be3a998633dc6f6244dc1625e0be63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,4025,26569,27925,27926,27927</link.rule.ids></links><search><creatorcontrib>Dalmo, R.</creatorcontrib><title>MATRIX FACTORIZATION OF MULTIVARIATE BERNSTEIN POLYNOMIALS</title><title>International journal of pure and applied mathematics : IJPAM</title><description>Ordinary univariate Bernstein polynomials can be represented in matrix form using factor matrices. In this paper we present the definition and basic properties of such factor matrices extended from the univariate case to the general case of arbitrary number of variables by using barycentric coordinates in the hyper-simplices of respective dimension. The main results in the paper are related to the design of an iterative algorithm for fast convex computation of multivariate Bernstein polynomials based on sparse-matrix factorization. In the process of derivation of this algorithm, we investigate some properties of the factorization, including symmetry, commutativity and differentiability of the factor matrices, and address the relevance of this factorization to the de Casteljau algorithm for evaluating curves and surfaces on B´ezier form. A set of representative examples is provided, including a geometric interpretation of the de Casteljau algorithm, and representation by factor matrices of multivariate surfaces and their derivatives in B´ezier form. Another new result is the observation that inverting the order of steps of a part of the new factorization algorithm provides a new, matrix-based, algebraic representation of a multivariate generalization of a special case of the de Boor-Cox computational algorithm.</description><subject>Mathematics and natural science: 400</subject><subject>VDP</subject><issn>1311-8080</issn><issn>1314-3395</issn><issn>1314-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNo1kF1LwzAUhoMoOObuvbN_oDPJSdPGuzg6DfRDukzUm5C2KXS4D1oR_PeGTs_NObw8vAcehG4JXhIaA73vdye7X34TDD3z0QWaESAsBBDR5XSTMMEJvkaLcdxhP0wQD8_QQy51pd6CtVzpslIfUquyCMp1kG8zrV5lpaROg8e0KjY6VUXwUmbvRZkrmW1u0FVnP0e3-NtztF2nevUcZuWTWsksbChlNIw7whLsotZaEYETNWuJ_59w5yDmDDc4rh1YIRIO0Da845SxtiGcRg7XjsMc3Z17m6Efv_qDORwHa3wHxIYQIYQn8D9xHMfBdeY09Hs7_HjKTILMJMicBfkIfgHHzFMD</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>Dalmo, R.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>3HK</scope></search><sort><creationdate>2015</creationdate><title>MATRIX FACTORIZATION OF MULTIVARIATE BERNSTEIN POLYNOMIALS</title><author>Dalmo, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2242-7f1480e5daa953e9b4d100486ee37640c07be3a998633dc6f6244dc1625e0be63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Mathematics and natural science: 400</topic><topic>VDP</topic><toplevel>online_resources</toplevel><creatorcontrib>Dalmo, R.</creatorcontrib><collection>CrossRef</collection><collection>NORA - Norwegian Open Research Archives</collection><jtitle>International journal of pure and applied mathematics : IJPAM</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dalmo, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MATRIX FACTORIZATION OF MULTIVARIATE BERNSTEIN POLYNOMIALS</atitle><jtitle>International journal of pure and applied mathematics : IJPAM</jtitle><date>2015</date><risdate>2015</risdate><volume>103</volume><issue>4</issue><issn>1311-8080</issn><issn>1314-3395</issn><eissn>1314-3395</eissn><abstract>Ordinary univariate Bernstein polynomials can be represented in matrix form using factor matrices. In this paper we present the definition and basic properties of such factor matrices extended from the univariate case to the general case of arbitrary number of variables by using barycentric coordinates in the hyper-simplices of respective dimension. The main results in the paper are related to the design of an iterative algorithm for fast convex computation of multivariate Bernstein polynomials based on sparse-matrix factorization. In the process of derivation of this algorithm, we investigate some properties of the factorization, including symmetry, commutativity and differentiability of the factor matrices, and address the relevance of this factorization to the de Casteljau algorithm for evaluating curves and surfaces on B´ezier form. A set of representative examples is provided, including a geometric interpretation of the de Casteljau algorithm, and representation by factor matrices of multivariate surfaces and their derivatives in B´ezier form. Another new result is the observation that inverting the order of steps of a part of the new factorization algorithm provides a new, matrix-based, algebraic representation of a multivariate generalization of a special case of the de Boor-Cox computational algorithm.</abstract><doi>10.12732/ijpam.v103i4.12</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1311-8080
ispartof International journal of pure and applied mathematics : IJPAM, 2015, Vol.103 (4)
issn 1311-8080
1314-3395
1314-3395
language eng
recordid cdi_cristin_nora_10037_11999
source NORA - Norwegian Open Research Archives; EZB-FREE-00999 freely available EZB journals
subjects Mathematics and natural science: 400
VDP
title MATRIX FACTORIZATION OF MULTIVARIATE BERNSTEIN POLYNOMIALS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T04%3A40%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_crist&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MATRIX%20FACTORIZATION%20OF%20MULTIVARIATE%20BERNSTEIN%20POLYNOMIALS&rft.jtitle=International%20journal%20of%20pure%20and%20applied%20mathematics%20:%20IJPAM&rft.au=Dalmo,%20R.&rft.date=2015&rft.volume=103&rft.issue=4&rft.issn=1311-8080&rft.eissn=1314-3395&rft_id=info:doi/10.12732/ijpam.v103i4.12&rft_dat=%3Ccrossref_crist%3E10_12732_ijpam_v103i4_12%3C/crossref_crist%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true