Four-component relativistic density functional theory with the polarisable continuum model: application to EPR parameters and paramagnetic NMR shifts
The description of chemical phenomena in solution is as challenging as it is important for the accurate calculation of molecular properties. Here, we present the implementation of the polarisable continuum model (PCM) in the four-component Dirac-Kohn-Sham density functional theory framework, offerin...
Gespeichert in:
Veröffentlicht in: | Molecular physics 2017-01, Vol.115 (1-2), p.214-227 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 227 |
---|---|
container_issue | 1-2 |
container_start_page | 214 |
container_title | Molecular physics |
container_volume | 115 |
creator | Remigio, Roberto Di Repisky, Michal Komorovsky, Stanislav Hrobarik, Peter Frediani, Luca Ruud, Kenneth |
description | The description of chemical phenomena in solution is as challenging as it is important for the accurate calculation of molecular properties. Here, we present the implementation of the polarisable continuum model (PCM) in the four-component Dirac-Kohn-Sham density functional theory framework, offering a cost-effective way to concurrently model solvent and relativistic effects. The implementation is based on the matrix representation of the Dirac-Coulomb Hamiltonian in the basis of restricted kinetically balanced Gaussian-type functions, exploiting a non-collinear Kramer's unrestricted formalism implemented in the program ReSpect, and the integral equation formalism of the PCM available through the stand-alone library PCMSolver. Calculations of electron paramagnetic resonance parameters (g-tensors and hyperfine coupling A-tensors), as well as of the temperature-dependent contribution to paramagnetic nuclear magnetic resonance (pNMR) shifts, are presented to validate the model and to demonstrate the importance of taking both relativistic and solvent effects into account for magnetic properties. As shown for selected Ru and Os complexes, the solvent shifts may amount to as much as 25% of the gas-phase values for g-tensor components and even more for pNMR shifts in some extreme cases. |
doi_str_mv | 10.1080/00268976.2016.1239846 |
format | Article |
fullrecord | <record><control><sourceid>proquest_3HK</sourceid><recordid>TN_cdi_cristin_nora_10037_10764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1904232315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-4c7d363db9b5d4458f8125269968812caa480f52c564b297c65e87f32125920e3</originalsourceid><addsrcrecordid>eNp9kctuFDEQRS0EEsPAJyAssWHTE7_bzQoUJRApPBTB2vK4bcaR225sd6L5EP4XtybZsGBTVZbOrSvXBeA1RjuMJDpDiAg59GJHEBY7TOggmXgCNpgK0lFE5FOwWZluhZ6DF6XcIoQEwmgD_lymJXcmTXOKNlaYbdDV3_lSvYGjjcXXI3RLNNWnqAOsB5vyEd77elhnOKegsy96Hyw0KVYfl2WCUxpteA_1PAdv9CqFNcGL7zdw1llPttpcoI7j6al_Rbvaff1yA8vBu1pegmdOh2JfPfQt-Hl58eP8c3f97dPV-cfrzjBGasdMP1JBx_2w5yNjXDqJCSdiGIRsk9GaSeQ4MVywPRl6I7iVvaOkUQNBlm7Bm9Nek9cfRxVT1gojRPtWe8Ea8e5EzDn9XmypavLF2BB0tGkpCg-IEUoo5g19-w96227bjtYoyTklPW_ZbAF_tEylZOvUnP2k87EZqjVO9RinWuNUD3E23YeTzkeX8qTvUw6jqvoYUnZZR-OLov9f8ReMs6bX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1855327512</pqid></control><display><type>article</type><title>Four-component relativistic density functional theory with the polarisable continuum model: application to EPR parameters and paramagnetic NMR shifts</title><source>NORA - Norwegian Open Research Archives</source><creator>Remigio, Roberto Di ; Repisky, Michal ; Komorovsky, Stanislav ; Hrobarik, Peter ; Frediani, Luca ; Ruud, Kenneth</creator><creatorcontrib>Remigio, Roberto Di ; Repisky, Michal ; Komorovsky, Stanislav ; Hrobarik, Peter ; Frediani, Luca ; Ruud, Kenneth</creatorcontrib><description>The description of chemical phenomena in solution is as challenging as it is important for the accurate calculation of molecular properties. Here, we present the implementation of the polarisable continuum model (PCM) in the four-component Dirac-Kohn-Sham density functional theory framework, offering a cost-effective way to concurrently model solvent and relativistic effects. The implementation is based on the matrix representation of the Dirac-Coulomb Hamiltonian in the basis of restricted kinetically balanced Gaussian-type functions, exploiting a non-collinear Kramer's unrestricted formalism implemented in the program ReSpect, and the integral equation formalism of the PCM available through the stand-alone library PCMSolver. Calculations of electron paramagnetic resonance parameters (g-tensors and hyperfine coupling A-tensors), as well as of the temperature-dependent contribution to paramagnetic nuclear magnetic resonance (pNMR) shifts, are presented to validate the model and to demonstrate the importance of taking both relativistic and solvent effects into account for magnetic properties. As shown for selected Ru and Os complexes, the solvent shifts may amount to as much as 25% of the gas-phase values for g-tensor components and even more for pNMR shifts in some extreme cases.</description><identifier>ISSN: 0026-8976</identifier><identifier>ISSN: 1362-3028</identifier><identifier>EISSN: 1362-3028</identifier><identifier>DOI: 10.1080/00268976.2016.1239846</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Chemistry: 440 ; Computational chemistry ; Density functional theory ; Dirac-Kohn-Sham ; EPR ; Formalism ; Kjemi: 440 ; Matematikk og Naturvitenskap: 400 ; Mathematical models ; Mathematics and natural science: 400 ; NMR ; Nuclear magnetic resonance ; paramagnetic ; Parameters ; Relativism ; Relativity ; Solvation ; Solvents ; Teoretisk kjemi, kvantekjemi: 444 ; Theoretical chemistry, quantum chemistry: 444 ; VDP</subject><ispartof>Molecular physics, 2017-01, Vol.115 (1-2), p.214-227</ispartof><rights>2016 Informa UK Limited, trading as Taylor & Francis Group 2016</rights><rights>2016 Informa UK Limited, trading as Taylor & Francis Group</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-4c7d363db9b5d4458f8125269968812caa480f52c564b297c65e87f32125920e3</citedby><cites>FETCH-LOGICAL-c442t-4c7d363db9b5d4458f8125269968812caa480f52c564b297c65e87f32125920e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,776,881,26546</link.rule.ids><linktorsrc>$$Uhttp://hdl.handle.net/10037/10764$$EView_record_in_NORA$$FView_record_in_$$GNORA$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Remigio, Roberto Di</creatorcontrib><creatorcontrib>Repisky, Michal</creatorcontrib><creatorcontrib>Komorovsky, Stanislav</creatorcontrib><creatorcontrib>Hrobarik, Peter</creatorcontrib><creatorcontrib>Frediani, Luca</creatorcontrib><creatorcontrib>Ruud, Kenneth</creatorcontrib><title>Four-component relativistic density functional theory with the polarisable continuum model: application to EPR parameters and paramagnetic NMR shifts</title><title>Molecular physics</title><description>The description of chemical phenomena in solution is as challenging as it is important for the accurate calculation of molecular properties. Here, we present the implementation of the polarisable continuum model (PCM) in the four-component Dirac-Kohn-Sham density functional theory framework, offering a cost-effective way to concurrently model solvent and relativistic effects. The implementation is based on the matrix representation of the Dirac-Coulomb Hamiltonian in the basis of restricted kinetically balanced Gaussian-type functions, exploiting a non-collinear Kramer's unrestricted formalism implemented in the program ReSpect, and the integral equation formalism of the PCM available through the stand-alone library PCMSolver. Calculations of electron paramagnetic resonance parameters (g-tensors and hyperfine coupling A-tensors), as well as of the temperature-dependent contribution to paramagnetic nuclear magnetic resonance (pNMR) shifts, are presented to validate the model and to demonstrate the importance of taking both relativistic and solvent effects into account for magnetic properties. As shown for selected Ru and Os complexes, the solvent shifts may amount to as much as 25% of the gas-phase values for g-tensor components and even more for pNMR shifts in some extreme cases.</description><subject>Chemistry: 440</subject><subject>Computational chemistry</subject><subject>Density functional theory</subject><subject>Dirac-Kohn-Sham</subject><subject>EPR</subject><subject>Formalism</subject><subject>Kjemi: 440</subject><subject>Matematikk og Naturvitenskap: 400</subject><subject>Mathematical models</subject><subject>Mathematics and natural science: 400</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>paramagnetic</subject><subject>Parameters</subject><subject>Relativism</subject><subject>Relativity</subject><subject>Solvation</subject><subject>Solvents</subject><subject>Teoretisk kjemi, kvantekjemi: 444</subject><subject>Theoretical chemistry, quantum chemistry: 444</subject><subject>VDP</subject><issn>0026-8976</issn><issn>1362-3028</issn><issn>1362-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNp9kctuFDEQRS0EEsPAJyAssWHTE7_bzQoUJRApPBTB2vK4bcaR225sd6L5EP4XtybZsGBTVZbOrSvXBeA1RjuMJDpDiAg59GJHEBY7TOggmXgCNpgK0lFE5FOwWZluhZ6DF6XcIoQEwmgD_lymJXcmTXOKNlaYbdDV3_lSvYGjjcXXI3RLNNWnqAOsB5vyEd77elhnOKegsy96Hyw0KVYfl2WCUxpteA_1PAdv9CqFNcGL7zdw1llPttpcoI7j6al_Rbvaff1yA8vBu1pegmdOh2JfPfQt-Hl58eP8c3f97dPV-cfrzjBGasdMP1JBx_2w5yNjXDqJCSdiGIRsk9GaSeQ4MVywPRl6I7iVvaOkUQNBlm7Bm9Nek9cfRxVT1gojRPtWe8Ea8e5EzDn9XmypavLF2BB0tGkpCg-IEUoo5g19-w96227bjtYoyTklPW_ZbAF_tEylZOvUnP2k87EZqjVO9RinWuNUD3E23YeTzkeX8qTvUw6jqvoYUnZZR-OLov9f8ReMs6bX</recordid><startdate>20170117</startdate><enddate>20170117</enddate><creator>Remigio, Roberto Di</creator><creator>Repisky, Michal</creator><creator>Komorovsky, Stanislav</creator><creator>Hrobarik, Peter</creator><creator>Frediani, Luca</creator><creator>Ruud, Kenneth</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><general>Taylor & Francis: STM, Behavioural Science and Public Health Titles. Molecular Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>3HK</scope></search><sort><creationdate>20170117</creationdate><title>Four-component relativistic density functional theory with the polarisable continuum model: application to EPR parameters and paramagnetic NMR shifts</title><author>Remigio, Roberto Di ; Repisky, Michal ; Komorovsky, Stanislav ; Hrobarik, Peter ; Frediani, Luca ; Ruud, Kenneth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-4c7d363db9b5d4458f8125269968812caa480f52c564b297c65e87f32125920e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Chemistry: 440</topic><topic>Computational chemistry</topic><topic>Density functional theory</topic><topic>Dirac-Kohn-Sham</topic><topic>EPR</topic><topic>Formalism</topic><topic>Kjemi: 440</topic><topic>Matematikk og Naturvitenskap: 400</topic><topic>Mathematical models</topic><topic>Mathematics and natural science: 400</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>paramagnetic</topic><topic>Parameters</topic><topic>Relativism</topic><topic>Relativity</topic><topic>Solvation</topic><topic>Solvents</topic><topic>Teoretisk kjemi, kvantekjemi: 444</topic><topic>Theoretical chemistry, quantum chemistry: 444</topic><topic>VDP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Remigio, Roberto Di</creatorcontrib><creatorcontrib>Repisky, Michal</creatorcontrib><creatorcontrib>Komorovsky, Stanislav</creatorcontrib><creatorcontrib>Hrobarik, Peter</creatorcontrib><creatorcontrib>Frediani, Luca</creatorcontrib><creatorcontrib>Ruud, Kenneth</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>NORA - Norwegian Open Research Archives</collection><jtitle>Molecular physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Remigio, Roberto Di</au><au>Repisky, Michal</au><au>Komorovsky, Stanislav</au><au>Hrobarik, Peter</au><au>Frediani, Luca</au><au>Ruud, Kenneth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Four-component relativistic density functional theory with the polarisable continuum model: application to EPR parameters and paramagnetic NMR shifts</atitle><jtitle>Molecular physics</jtitle><date>2017-01-17</date><risdate>2017</risdate><volume>115</volume><issue>1-2</issue><spage>214</spage><epage>227</epage><pages>214-227</pages><issn>0026-8976</issn><issn>1362-3028</issn><eissn>1362-3028</eissn><abstract>The description of chemical phenomena in solution is as challenging as it is important for the accurate calculation of molecular properties. Here, we present the implementation of the polarisable continuum model (PCM) in the four-component Dirac-Kohn-Sham density functional theory framework, offering a cost-effective way to concurrently model solvent and relativistic effects. The implementation is based on the matrix representation of the Dirac-Coulomb Hamiltonian in the basis of restricted kinetically balanced Gaussian-type functions, exploiting a non-collinear Kramer's unrestricted formalism implemented in the program ReSpect, and the integral equation formalism of the PCM available through the stand-alone library PCMSolver. Calculations of electron paramagnetic resonance parameters (g-tensors and hyperfine coupling A-tensors), as well as of the temperature-dependent contribution to paramagnetic nuclear magnetic resonance (pNMR) shifts, are presented to validate the model and to demonstrate the importance of taking both relativistic and solvent effects into account for magnetic properties. As shown for selected Ru and Os complexes, the solvent shifts may amount to as much as 25% of the gas-phase values for g-tensor components and even more for pNMR shifts in some extreme cases.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/00268976.2016.1239846</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0026-8976 |
ispartof | Molecular physics, 2017-01, Vol.115 (1-2), p.214-227 |
issn | 0026-8976 1362-3028 1362-3028 |
language | eng |
recordid | cdi_cristin_nora_10037_10764 |
source | NORA - Norwegian Open Research Archives |
subjects | Chemistry: 440 Computational chemistry Density functional theory Dirac-Kohn-Sham EPR Formalism Kjemi: 440 Matematikk og Naturvitenskap: 400 Mathematical models Mathematics and natural science: 400 NMR Nuclear magnetic resonance paramagnetic Parameters Relativism Relativity Solvation Solvents Teoretisk kjemi, kvantekjemi: 444 Theoretical chemistry, quantum chemistry: 444 VDP |
title | Four-component relativistic density functional theory with the polarisable continuum model: application to EPR parameters and paramagnetic NMR shifts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A32%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_3HK&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Four-component%20relativistic%20density%20functional%20theory%20with%20the%20polarisable%20continuum%20model:%20application%20to%20EPR%20parameters%20and%20paramagnetic%20NMR%20shifts&rft.jtitle=Molecular%20physics&rft.au=Remigio,%20Roberto%20Di&rft.date=2017-01-17&rft.volume=115&rft.issue=1-2&rft.spage=214&rft.epage=227&rft.pages=214-227&rft.issn=0026-8976&rft.eissn=1362-3028&rft_id=info:doi/10.1080/00268976.2016.1239846&rft_dat=%3Cproquest_3HK%3E1904232315%3C/proquest_3HK%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1855327512&rft_id=info:pmid/&rfr_iscdi=true |