Four-component relativistic density functional theory with the polarisable continuum model: application to EPR parameters and paramagnetic NMR shifts

The description of chemical phenomena in solution is as challenging as it is important for the accurate calculation of molecular properties. Here, we present the implementation of the polarisable continuum model (PCM) in the four-component Dirac-Kohn-Sham density functional theory framework, offerin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular physics 2017-01, Vol.115 (1-2), p.214-227
Hauptverfasser: Remigio, Roberto Di, Repisky, Michal, Komorovsky, Stanislav, Hrobarik, Peter, Frediani, Luca, Ruud, Kenneth
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 227
container_issue 1-2
container_start_page 214
container_title Molecular physics
container_volume 115
creator Remigio, Roberto Di
Repisky, Michal
Komorovsky, Stanislav
Hrobarik, Peter
Frediani, Luca
Ruud, Kenneth
description The description of chemical phenomena in solution is as challenging as it is important for the accurate calculation of molecular properties. Here, we present the implementation of the polarisable continuum model (PCM) in the four-component Dirac-Kohn-Sham density functional theory framework, offering a cost-effective way to concurrently model solvent and relativistic effects. The implementation is based on the matrix representation of the Dirac-Coulomb Hamiltonian in the basis of restricted kinetically balanced Gaussian-type functions, exploiting a non-collinear Kramer's unrestricted formalism implemented in the program ReSpect, and the integral equation formalism of the PCM available through the stand-alone library PCMSolver. Calculations of electron paramagnetic resonance parameters (g-tensors and hyperfine coupling A-tensors), as well as of the temperature-dependent contribution to paramagnetic nuclear magnetic resonance (pNMR) shifts, are presented to validate the model and to demonstrate the importance of taking both relativistic and solvent effects into account for magnetic properties. As shown for selected Ru and Os complexes, the solvent shifts may amount to as much as 25% of the gas-phase values for g-tensor components and even more for pNMR shifts in some extreme cases.
doi_str_mv 10.1080/00268976.2016.1239846
format Article
fullrecord <record><control><sourceid>proquest_3HK</sourceid><recordid>TN_cdi_cristin_nora_10037_10764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1904232315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-4c7d363db9b5d4458f8125269968812caa480f52c564b297c65e87f32125920e3</originalsourceid><addsrcrecordid>eNp9kctuFDEQRS0EEsPAJyAssWHTE7_bzQoUJRApPBTB2vK4bcaR225sd6L5EP4XtybZsGBTVZbOrSvXBeA1RjuMJDpDiAg59GJHEBY7TOggmXgCNpgK0lFE5FOwWZluhZ6DF6XcIoQEwmgD_lymJXcmTXOKNlaYbdDV3_lSvYGjjcXXI3RLNNWnqAOsB5vyEd77elhnOKegsy96Hyw0KVYfl2WCUxpteA_1PAdv9CqFNcGL7zdw1llPttpcoI7j6al_Rbvaff1yA8vBu1pegmdOh2JfPfQt-Hl58eP8c3f97dPV-cfrzjBGasdMP1JBx_2w5yNjXDqJCSdiGIRsk9GaSeQ4MVywPRl6I7iVvaOkUQNBlm7Bm9Nek9cfRxVT1gojRPtWe8Ea8e5EzDn9XmypavLF2BB0tGkpCg-IEUoo5g19-w96227bjtYoyTklPW_ZbAF_tEylZOvUnP2k87EZqjVO9RinWuNUD3E23YeTzkeX8qTvUw6jqvoYUnZZR-OLov9f8ReMs6bX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1855327512</pqid></control><display><type>article</type><title>Four-component relativistic density functional theory with the polarisable continuum model: application to EPR parameters and paramagnetic NMR shifts</title><source>NORA - Norwegian Open Research Archives</source><creator>Remigio, Roberto Di ; Repisky, Michal ; Komorovsky, Stanislav ; Hrobarik, Peter ; Frediani, Luca ; Ruud, Kenneth</creator><creatorcontrib>Remigio, Roberto Di ; Repisky, Michal ; Komorovsky, Stanislav ; Hrobarik, Peter ; Frediani, Luca ; Ruud, Kenneth</creatorcontrib><description>The description of chemical phenomena in solution is as challenging as it is important for the accurate calculation of molecular properties. Here, we present the implementation of the polarisable continuum model (PCM) in the four-component Dirac-Kohn-Sham density functional theory framework, offering a cost-effective way to concurrently model solvent and relativistic effects. The implementation is based on the matrix representation of the Dirac-Coulomb Hamiltonian in the basis of restricted kinetically balanced Gaussian-type functions, exploiting a non-collinear Kramer's unrestricted formalism implemented in the program ReSpect, and the integral equation formalism of the PCM available through the stand-alone library PCMSolver. Calculations of electron paramagnetic resonance parameters (g-tensors and hyperfine coupling A-tensors), as well as of the temperature-dependent contribution to paramagnetic nuclear magnetic resonance (pNMR) shifts, are presented to validate the model and to demonstrate the importance of taking both relativistic and solvent effects into account for magnetic properties. As shown for selected Ru and Os complexes, the solvent shifts may amount to as much as 25% of the gas-phase values for g-tensor components and even more for pNMR shifts in some extreme cases.</description><identifier>ISSN: 0026-8976</identifier><identifier>ISSN: 1362-3028</identifier><identifier>EISSN: 1362-3028</identifier><identifier>DOI: 10.1080/00268976.2016.1239846</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Chemistry: 440 ; Computational chemistry ; Density functional theory ; Dirac-Kohn-Sham ; EPR ; Formalism ; Kjemi: 440 ; Matematikk og Naturvitenskap: 400 ; Mathematical models ; Mathematics and natural science: 400 ; NMR ; Nuclear magnetic resonance ; paramagnetic ; Parameters ; Relativism ; Relativity ; Solvation ; Solvents ; Teoretisk kjemi, kvantekjemi: 444 ; Theoretical chemistry, quantum chemistry: 444 ; VDP</subject><ispartof>Molecular physics, 2017-01, Vol.115 (1-2), p.214-227</ispartof><rights>2016 Informa UK Limited, trading as Taylor &amp; Francis Group 2016</rights><rights>2016 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-4c7d363db9b5d4458f8125269968812caa480f52c564b297c65e87f32125920e3</citedby><cites>FETCH-LOGICAL-c442t-4c7d363db9b5d4458f8125269968812caa480f52c564b297c65e87f32125920e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,776,881,26546</link.rule.ids><linktorsrc>$$Uhttp://hdl.handle.net/10037/10764$$EView_record_in_NORA$$FView_record_in_$$GNORA$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Remigio, Roberto Di</creatorcontrib><creatorcontrib>Repisky, Michal</creatorcontrib><creatorcontrib>Komorovsky, Stanislav</creatorcontrib><creatorcontrib>Hrobarik, Peter</creatorcontrib><creatorcontrib>Frediani, Luca</creatorcontrib><creatorcontrib>Ruud, Kenneth</creatorcontrib><title>Four-component relativistic density functional theory with the polarisable continuum model: application to EPR parameters and paramagnetic NMR shifts</title><title>Molecular physics</title><description>The description of chemical phenomena in solution is as challenging as it is important for the accurate calculation of molecular properties. Here, we present the implementation of the polarisable continuum model (PCM) in the four-component Dirac-Kohn-Sham density functional theory framework, offering a cost-effective way to concurrently model solvent and relativistic effects. The implementation is based on the matrix representation of the Dirac-Coulomb Hamiltonian in the basis of restricted kinetically balanced Gaussian-type functions, exploiting a non-collinear Kramer's unrestricted formalism implemented in the program ReSpect, and the integral equation formalism of the PCM available through the stand-alone library PCMSolver. Calculations of electron paramagnetic resonance parameters (g-tensors and hyperfine coupling A-tensors), as well as of the temperature-dependent contribution to paramagnetic nuclear magnetic resonance (pNMR) shifts, are presented to validate the model and to demonstrate the importance of taking both relativistic and solvent effects into account for magnetic properties. As shown for selected Ru and Os complexes, the solvent shifts may amount to as much as 25% of the gas-phase values for g-tensor components and even more for pNMR shifts in some extreme cases.</description><subject>Chemistry: 440</subject><subject>Computational chemistry</subject><subject>Density functional theory</subject><subject>Dirac-Kohn-Sham</subject><subject>EPR</subject><subject>Formalism</subject><subject>Kjemi: 440</subject><subject>Matematikk og Naturvitenskap: 400</subject><subject>Mathematical models</subject><subject>Mathematics and natural science: 400</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>paramagnetic</subject><subject>Parameters</subject><subject>Relativism</subject><subject>Relativity</subject><subject>Solvation</subject><subject>Solvents</subject><subject>Teoretisk kjemi, kvantekjemi: 444</subject><subject>Theoretical chemistry, quantum chemistry: 444</subject><subject>VDP</subject><issn>0026-8976</issn><issn>1362-3028</issn><issn>1362-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNp9kctuFDEQRS0EEsPAJyAssWHTE7_bzQoUJRApPBTB2vK4bcaR225sd6L5EP4XtybZsGBTVZbOrSvXBeA1RjuMJDpDiAg59GJHEBY7TOggmXgCNpgK0lFE5FOwWZluhZ6DF6XcIoQEwmgD_lymJXcmTXOKNlaYbdDV3_lSvYGjjcXXI3RLNNWnqAOsB5vyEd77elhnOKegsy96Hyw0KVYfl2WCUxpteA_1PAdv9CqFNcGL7zdw1llPttpcoI7j6al_Rbvaff1yA8vBu1pegmdOh2JfPfQt-Hl58eP8c3f97dPV-cfrzjBGasdMP1JBx_2w5yNjXDqJCSdiGIRsk9GaSeQ4MVywPRl6I7iVvaOkUQNBlm7Bm9Nek9cfRxVT1gojRPtWe8Ea8e5EzDn9XmypavLF2BB0tGkpCg-IEUoo5g19-w96227bjtYoyTklPW_ZbAF_tEylZOvUnP2k87EZqjVO9RinWuNUD3E23YeTzkeX8qTvUw6jqvoYUnZZR-OLov9f8ReMs6bX</recordid><startdate>20170117</startdate><enddate>20170117</enddate><creator>Remigio, Roberto Di</creator><creator>Repisky, Michal</creator><creator>Komorovsky, Stanislav</creator><creator>Hrobarik, Peter</creator><creator>Frediani, Luca</creator><creator>Ruud, Kenneth</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><general>Taylor &amp; Francis: STM, Behavioural Science and Public Health Titles. Molecular Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>3HK</scope></search><sort><creationdate>20170117</creationdate><title>Four-component relativistic density functional theory with the polarisable continuum model: application to EPR parameters and paramagnetic NMR shifts</title><author>Remigio, Roberto Di ; Repisky, Michal ; Komorovsky, Stanislav ; Hrobarik, Peter ; Frediani, Luca ; Ruud, Kenneth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-4c7d363db9b5d4458f8125269968812caa480f52c564b297c65e87f32125920e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Chemistry: 440</topic><topic>Computational chemistry</topic><topic>Density functional theory</topic><topic>Dirac-Kohn-Sham</topic><topic>EPR</topic><topic>Formalism</topic><topic>Kjemi: 440</topic><topic>Matematikk og Naturvitenskap: 400</topic><topic>Mathematical models</topic><topic>Mathematics and natural science: 400</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>paramagnetic</topic><topic>Parameters</topic><topic>Relativism</topic><topic>Relativity</topic><topic>Solvation</topic><topic>Solvents</topic><topic>Teoretisk kjemi, kvantekjemi: 444</topic><topic>Theoretical chemistry, quantum chemistry: 444</topic><topic>VDP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Remigio, Roberto Di</creatorcontrib><creatorcontrib>Repisky, Michal</creatorcontrib><creatorcontrib>Komorovsky, Stanislav</creatorcontrib><creatorcontrib>Hrobarik, Peter</creatorcontrib><creatorcontrib>Frediani, Luca</creatorcontrib><creatorcontrib>Ruud, Kenneth</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>NORA - Norwegian Open Research Archives</collection><jtitle>Molecular physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Remigio, Roberto Di</au><au>Repisky, Michal</au><au>Komorovsky, Stanislav</au><au>Hrobarik, Peter</au><au>Frediani, Luca</au><au>Ruud, Kenneth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Four-component relativistic density functional theory with the polarisable continuum model: application to EPR parameters and paramagnetic NMR shifts</atitle><jtitle>Molecular physics</jtitle><date>2017-01-17</date><risdate>2017</risdate><volume>115</volume><issue>1-2</issue><spage>214</spage><epage>227</epage><pages>214-227</pages><issn>0026-8976</issn><issn>1362-3028</issn><eissn>1362-3028</eissn><abstract>The description of chemical phenomena in solution is as challenging as it is important for the accurate calculation of molecular properties. Here, we present the implementation of the polarisable continuum model (PCM) in the four-component Dirac-Kohn-Sham density functional theory framework, offering a cost-effective way to concurrently model solvent and relativistic effects. The implementation is based on the matrix representation of the Dirac-Coulomb Hamiltonian in the basis of restricted kinetically balanced Gaussian-type functions, exploiting a non-collinear Kramer's unrestricted formalism implemented in the program ReSpect, and the integral equation formalism of the PCM available through the stand-alone library PCMSolver. Calculations of electron paramagnetic resonance parameters (g-tensors and hyperfine coupling A-tensors), as well as of the temperature-dependent contribution to paramagnetic nuclear magnetic resonance (pNMR) shifts, are presented to validate the model and to demonstrate the importance of taking both relativistic and solvent effects into account for magnetic properties. As shown for selected Ru and Os complexes, the solvent shifts may amount to as much as 25% of the gas-phase values for g-tensor components and even more for pNMR shifts in some extreme cases.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/00268976.2016.1239846</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0026-8976
ispartof Molecular physics, 2017-01, Vol.115 (1-2), p.214-227
issn 0026-8976
1362-3028
1362-3028
language eng
recordid cdi_cristin_nora_10037_10764
source NORA - Norwegian Open Research Archives
subjects Chemistry: 440
Computational chemistry
Density functional theory
Dirac-Kohn-Sham
EPR
Formalism
Kjemi: 440
Matematikk og Naturvitenskap: 400
Mathematical models
Mathematics and natural science: 400
NMR
Nuclear magnetic resonance
paramagnetic
Parameters
Relativism
Relativity
Solvation
Solvents
Teoretisk kjemi, kvantekjemi: 444
Theoretical chemistry, quantum chemistry: 444
VDP
title Four-component relativistic density functional theory with the polarisable continuum model: application to EPR parameters and paramagnetic NMR shifts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A32%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_3HK&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Four-component%20relativistic%20density%20functional%20theory%20with%20the%20polarisable%20continuum%20model:%20application%20to%20EPR%20parameters%20and%20paramagnetic%20NMR%20shifts&rft.jtitle=Molecular%20physics&rft.au=Remigio,%20Roberto%20Di&rft.date=2017-01-17&rft.volume=115&rft.issue=1-2&rft.spage=214&rft.epage=227&rft.pages=214-227&rft.issn=0026-8976&rft.eissn=1362-3028&rft_id=info:doi/10.1080/00268976.2016.1239846&rft_dat=%3Cproquest_3HK%3E1904232315%3C/proquest_3HK%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1855327512&rft_id=info:pmid/&rfr_iscdi=true