Bayesian Estimation of ARCH-Type Volatility Models

Empirical evidence abounds that asset returns exhibit characteristics such as volatility clustering, asymmetry, and heavy‐tailedness. Volatility clustering describes the tendency of returns to alternate between periods of high volatility and low volatility. In addition, volatility responds asymmetri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Güner, Biliana S., Rachev, Svetlozar, Hsu, John S. J., Fabozzi, Frank J.
Format: Reference Entry
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Güner, Biliana S.
Rachev, Svetlozar
Hsu, John S. J.
Fabozzi, Frank J.
description Empirical evidence abounds that asset returns exhibit characteristics such as volatility clustering, asymmetry, and heavy‐tailedness. Volatility clustering describes the tendency of returns to alternate between periods of high volatility and low volatility. In addition, volatility responds asymmetrically to positive and negative return shocks—it tends to be higher when the market falls than when it rises. The nonconstancy of volatility has been suggested as an underlying reason for returns’ fat tails. Volatility models attempt to systematically explain these stylized facts about asset returns. The Bayesian methodology offers distinct advantages over the classical framework in estimating volatility models. Parameter restrictions, such as stationarity restriction, are notoriously difficult to handle within the frequentist setting and straightforward to implement in the Bayesian one. The MCMC numerical simulation methods facilitate greatly the estimation of complex volatility models, such as Markov‐switching volatility models.
doi_str_mv 10.1002/9781118182635.efm0014
format Reference Entry
fullrecord <record><control><sourceid>credo_wiley</sourceid><recordid>TN_cdi_credo_entries_13011621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><credo_id>13011621</credo_id><sourcerecordid>13011621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c183f-f3bb46748f2e36bb75a30e216e12c6bacf2572e81b38f7ef1ca9dc64dcf3505e3</originalsourceid><addsrcrecordid>eNqNkO9KwzAUxSMiKLOPMOgLbN6btEkGIswx_8BEkOnXkKY3EOna0RSkPr2VTWGC4v1yuIf7O3APY2OEKQLwi5nSiKhRcynyKfkNAGZHLDnwj793AKmEOGVJjK8wjMozycUZ49e2pxhsnS5jFza2C02dNj6dPy3uJut-S-lLUw1uFbo-fWhKquI5O_G2ipTsdcSeb5br4Xz1eHu_mK8mDrXwEy-KIpMq056TkEWhciuAOEpC7mRhnee54qSxENor8ujsrHQyK50XOeQkRuxyl_sWKupNS55aqh0ZBPNZgTl41ewr-NLf8UPsPWx_omZb-gG_-g8OfwSMdwGupbIxVHdtoGhQAKLkKD4AtAmAkQ</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>reference_entry</recordtype></control><display><type>reference_entry</type><title>Bayesian Estimation of ARCH-Type Volatility Models</title><source>O'Reilly Online Learning: Academic/Public Library Edition</source><creator>Güner, Biliana S. ; Rachev, Svetlozar ; Hsu, John S. J. ; Fabozzi, Frank J.</creator><contributor>Fabozzi, Frank J.</contributor><creatorcontrib>Güner, Biliana S. ; Rachev, Svetlozar ; Hsu, John S. J. ; Fabozzi, Frank J. ; Fabozzi, Frank J.</creatorcontrib><description>Empirical evidence abounds that asset returns exhibit characteristics such as volatility clustering, asymmetry, and heavy‐tailedness. Volatility clustering describes the tendency of returns to alternate between periods of high volatility and low volatility. In addition, volatility responds asymmetrically to positive and negative return shocks—it tends to be higher when the market falls than when it rises. The nonconstancy of volatility has been suggested as an underlying reason for returns’ fat tails. Volatility models attempt to systematically explain these stylized facts about asset returns. The Bayesian methodology offers distinct advantages over the classical framework in estimating volatility models. Parameter restrictions, such as stationarity restriction, are notoriously difficult to handle within the frequentist setting and straightforward to implement in the Bayesian one. The MCMC numerical simulation methods facilitate greatly the estimation of complex volatility models, such as Markov‐switching volatility models.</description><identifier>ISBN: 9781118006733</identifier><identifier>ISBN: 1118006739</identifier><identifier>EISBN: 9781118182635</identifier><identifier>EISBN: 1118182634</identifier><identifier>DOI: 10.1002/9781118182635.efm0014</identifier><language>eng</language><publisher>Hoboken, NJ, USA: John Wiley &amp; Sons, Inc</publisher><ispartof>Encyclopedia of Financial Models, 2013</ispartof><rights>Wiley ©2013</rights><rights>Copyright © 2013 by Frank J. Fabozzi. All rights reserved.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>127,146,776,780,27904</link.rule.ids></links><search><contributor>Fabozzi, Frank J.</contributor><creatorcontrib>Güner, Biliana S.</creatorcontrib><creatorcontrib>Rachev, Svetlozar</creatorcontrib><creatorcontrib>Hsu, John S. J.</creatorcontrib><creatorcontrib>Fabozzi, Frank J.</creatorcontrib><title>Bayesian Estimation of ARCH-Type Volatility Models</title><title>Encyclopedia of Financial Models</title><description>Empirical evidence abounds that asset returns exhibit characteristics such as volatility clustering, asymmetry, and heavy‐tailedness. Volatility clustering describes the tendency of returns to alternate between periods of high volatility and low volatility. In addition, volatility responds asymmetrically to positive and negative return shocks—it tends to be higher when the market falls than when it rises. The nonconstancy of volatility has been suggested as an underlying reason for returns’ fat tails. Volatility models attempt to systematically explain these stylized facts about asset returns. The Bayesian methodology offers distinct advantages over the classical framework in estimating volatility models. Parameter restrictions, such as stationarity restriction, are notoriously difficult to handle within the frequentist setting and straightforward to implement in the Bayesian one. The MCMC numerical simulation methods facilitate greatly the estimation of complex volatility models, such as Markov‐switching volatility models.</description><isbn>9781118006733</isbn><isbn>1118006739</isbn><isbn>9781118182635</isbn><isbn>1118182634</isbn><fulltext>true</fulltext><rsrctype>reference_entry</rsrctype><creationdate>2013</creationdate><recordtype>reference_entry</recordtype><recordid>eNqNkO9KwzAUxSMiKLOPMOgLbN6btEkGIswx_8BEkOnXkKY3EOna0RSkPr2VTWGC4v1yuIf7O3APY2OEKQLwi5nSiKhRcynyKfkNAGZHLDnwj793AKmEOGVJjK8wjMozycUZ49e2pxhsnS5jFza2C02dNj6dPy3uJut-S-lLUw1uFbo-fWhKquI5O_G2ipTsdcSeb5br4Xz1eHu_mK8mDrXwEy-KIpMq056TkEWhciuAOEpC7mRhnee54qSxENor8ujsrHQyK50XOeQkRuxyl_sWKupNS55aqh0ZBPNZgTl41ewr-NLf8UPsPWx_omZb-gG_-g8OfwSMdwGupbIxVHdtoGhQAKLkKD4AtAmAkQ</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Güner, Biliana S.</creator><creator>Rachev, Svetlozar</creator><creator>Hsu, John S. J.</creator><creator>Fabozzi, Frank J.</creator><general>John Wiley &amp; Sons, Inc</general><scope>ADONM</scope></search><sort><creationdate>2013</creationdate><title>Bayesian Estimation of ARCH-Type Volatility Models</title><author>Güner, Biliana S. ; Rachev, Svetlozar ; Hsu, John S. J. ; Fabozzi, Frank J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c183f-f3bb46748f2e36bb75a30e216e12c6bacf2572e81b38f7ef1ca9dc64dcf3505e3</frbrgroupid><rsrctype>reference_entrys</rsrctype><prefilter>reference_entrys</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Güner, Biliana S.</creatorcontrib><creatorcontrib>Rachev, Svetlozar</creatorcontrib><creatorcontrib>Hsu, John S. J.</creatorcontrib><creatorcontrib>Fabozzi, Frank J.</creatorcontrib><collection>Credo Reference 500+</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Güner, Biliana S.</au><au>Rachev, Svetlozar</au><au>Hsu, John S. J.</au><au>Fabozzi, Frank J.</au><au>Fabozzi, Frank J.</au><format>book</format><genre>chapter</genre><ristype>GEN</ristype><atitle>Bayesian Estimation of ARCH-Type Volatility Models</atitle><btitle>Encyclopedia of Financial Models</btitle><date>2013</date><risdate>2013</risdate><isbn>9781118006733</isbn><isbn>1118006739</isbn><eisbn>9781118182635</eisbn><eisbn>1118182634</eisbn><abstract>Empirical evidence abounds that asset returns exhibit characteristics such as volatility clustering, asymmetry, and heavy‐tailedness. Volatility clustering describes the tendency of returns to alternate between periods of high volatility and low volatility. In addition, volatility responds asymmetrically to positive and negative return shocks—it tends to be higher when the market falls than when it rises. The nonconstancy of volatility has been suggested as an underlying reason for returns’ fat tails. Volatility models attempt to systematically explain these stylized facts about asset returns. The Bayesian methodology offers distinct advantages over the classical framework in estimating volatility models. Parameter restrictions, such as stationarity restriction, are notoriously difficult to handle within the frequentist setting and straightforward to implement in the Bayesian one. The MCMC numerical simulation methods facilitate greatly the estimation of complex volatility models, such as Markov‐switching volatility models.</abstract><cop>Hoboken, NJ, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/9781118182635.efm0014</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISBN: 9781118006733
ispartof Encyclopedia of Financial Models, 2013
issn
language eng
recordid cdi_credo_entries_13011621
source O'Reilly Online Learning: Academic/Public Library Edition
title Bayesian Estimation of ARCH-Type Volatility Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A37%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-credo_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=chapter&rft.atitle=Bayesian%20Estimation%20of%20ARCH-Type%20Volatility%20Models&rft.btitle=Encyclopedia%20of%20Financial%20Models&rft.au=G%C3%BCner,%20Biliana%20S.&rft.date=2013&rft.isbn=9781118006733&rft.isbn_list=1118006739&rft_id=info:doi/10.1002/9781118182635.efm0014&rft_dat=%3Ccredo_wiley%3E13011621%3C/credo_wiley%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781118182635&rft.eisbn_list=1118182634&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_credo_id=13011621&rfr_iscdi=true