Bayesian Estimation of ARCH-Type Volatility Models
Empirical evidence abounds that asset returns exhibit characteristics such as volatility clustering, asymmetry, and heavy‐tailedness. Volatility clustering describes the tendency of returns to alternate between periods of high volatility and low volatility. In addition, volatility responds asymmetri...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Reference Entry |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Güner, Biliana S. Rachev, Svetlozar Hsu, John S. J. Fabozzi, Frank J. |
description | Empirical evidence abounds that asset returns exhibit characteristics such as volatility clustering, asymmetry, and heavy‐tailedness. Volatility clustering describes the tendency of returns to alternate between periods of high volatility and low volatility. In addition, volatility responds asymmetrically to positive and negative return shocks—it tends to be higher when the market falls than when it rises. The nonconstancy of volatility has been suggested as an underlying reason for returns’ fat tails. Volatility models attempt to systematically explain these stylized facts about asset returns. The Bayesian methodology offers distinct advantages over the classical framework in estimating volatility models. Parameter restrictions, such as stationarity restriction, are notoriously difficult to handle within the frequentist setting and straightforward to implement in the Bayesian one. The MCMC numerical simulation methods facilitate greatly the estimation of complex volatility models, such as Markov‐switching volatility models. |
doi_str_mv | 10.1002/9781118182635.efm0014 |
format | Reference Entry |
fullrecord | <record><control><sourceid>credo_wiley</sourceid><recordid>TN_cdi_credo_entries_13011621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><credo_id>13011621</credo_id><sourcerecordid>13011621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c183f-f3bb46748f2e36bb75a30e216e12c6bacf2572e81b38f7ef1ca9dc64dcf3505e3</originalsourceid><addsrcrecordid>eNqNkO9KwzAUxSMiKLOPMOgLbN6btEkGIswx_8BEkOnXkKY3EOna0RSkPr2VTWGC4v1yuIf7O3APY2OEKQLwi5nSiKhRcynyKfkNAGZHLDnwj793AKmEOGVJjK8wjMozycUZ49e2pxhsnS5jFza2C02dNj6dPy3uJut-S-lLUw1uFbo-fWhKquI5O_G2ipTsdcSeb5br4Xz1eHu_mK8mDrXwEy-KIpMq056TkEWhciuAOEpC7mRhnee54qSxENor8ujsrHQyK50XOeQkRuxyl_sWKupNS55aqh0ZBPNZgTl41ewr-NLf8UPsPWx_omZb-gG_-g8OfwSMdwGupbIxVHdtoGhQAKLkKD4AtAmAkQ</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>reference_entry</recordtype></control><display><type>reference_entry</type><title>Bayesian Estimation of ARCH-Type Volatility Models</title><source>O'Reilly Online Learning: Academic/Public Library Edition</source><creator>Güner, Biliana S. ; Rachev, Svetlozar ; Hsu, John S. J. ; Fabozzi, Frank J.</creator><contributor>Fabozzi, Frank J.</contributor><creatorcontrib>Güner, Biliana S. ; Rachev, Svetlozar ; Hsu, John S. J. ; Fabozzi, Frank J. ; Fabozzi, Frank J.</creatorcontrib><description>Empirical evidence abounds that asset returns exhibit characteristics such as volatility clustering, asymmetry, and heavy‐tailedness. Volatility clustering describes the tendency of returns to alternate between periods of high volatility and low volatility. In addition, volatility responds asymmetrically to positive and negative return shocks—it tends to be higher when the market falls than when it rises. The nonconstancy of volatility has been suggested as an underlying reason for returns’ fat tails. Volatility models attempt to systematically explain these stylized facts about asset returns. The Bayesian methodology offers distinct advantages over the classical framework in estimating volatility models. Parameter restrictions, such as stationarity restriction, are notoriously difficult to handle within the frequentist setting and straightforward to implement in the Bayesian one. The MCMC numerical simulation methods facilitate greatly the estimation of complex volatility models, such as Markov‐switching volatility models.</description><identifier>ISBN: 9781118006733</identifier><identifier>ISBN: 1118006739</identifier><identifier>EISBN: 9781118182635</identifier><identifier>EISBN: 1118182634</identifier><identifier>DOI: 10.1002/9781118182635.efm0014</identifier><language>eng</language><publisher>Hoboken, NJ, USA: John Wiley & Sons, Inc</publisher><ispartof>Encyclopedia of Financial Models, 2013</ispartof><rights>Wiley ©2013</rights><rights>Copyright © 2013 by Frank J. Fabozzi. All rights reserved.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>127,146,776,780,27904</link.rule.ids></links><search><contributor>Fabozzi, Frank J.</contributor><creatorcontrib>Güner, Biliana S.</creatorcontrib><creatorcontrib>Rachev, Svetlozar</creatorcontrib><creatorcontrib>Hsu, John S. J.</creatorcontrib><creatorcontrib>Fabozzi, Frank J.</creatorcontrib><title>Bayesian Estimation of ARCH-Type Volatility Models</title><title>Encyclopedia of Financial Models</title><description>Empirical evidence abounds that asset returns exhibit characteristics such as volatility clustering, asymmetry, and heavy‐tailedness. Volatility clustering describes the tendency of returns to alternate between periods of high volatility and low volatility. In addition, volatility responds asymmetrically to positive and negative return shocks—it tends to be higher when the market falls than when it rises. The nonconstancy of volatility has been suggested as an underlying reason for returns’ fat tails. Volatility models attempt to systematically explain these stylized facts about asset returns. The Bayesian methodology offers distinct advantages over the classical framework in estimating volatility models. Parameter restrictions, such as stationarity restriction, are notoriously difficult to handle within the frequentist setting and straightforward to implement in the Bayesian one. The MCMC numerical simulation methods facilitate greatly the estimation of complex volatility models, such as Markov‐switching volatility models.</description><isbn>9781118006733</isbn><isbn>1118006739</isbn><isbn>9781118182635</isbn><isbn>1118182634</isbn><fulltext>true</fulltext><rsrctype>reference_entry</rsrctype><creationdate>2013</creationdate><recordtype>reference_entry</recordtype><recordid>eNqNkO9KwzAUxSMiKLOPMOgLbN6btEkGIswx_8BEkOnXkKY3EOna0RSkPr2VTWGC4v1yuIf7O3APY2OEKQLwi5nSiKhRcynyKfkNAGZHLDnwj793AKmEOGVJjK8wjMozycUZ49e2pxhsnS5jFza2C02dNj6dPy3uJut-S-lLUw1uFbo-fWhKquI5O_G2ipTsdcSeb5br4Xz1eHu_mK8mDrXwEy-KIpMq056TkEWhciuAOEpC7mRhnee54qSxENor8ujsrHQyK50XOeQkRuxyl_sWKupNS55aqh0ZBPNZgTl41ewr-NLf8UPsPWx_omZb-gG_-g8OfwSMdwGupbIxVHdtoGhQAKLkKD4AtAmAkQ</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Güner, Biliana S.</creator><creator>Rachev, Svetlozar</creator><creator>Hsu, John S. J.</creator><creator>Fabozzi, Frank J.</creator><general>John Wiley & Sons, Inc</general><scope>ADONM</scope></search><sort><creationdate>2013</creationdate><title>Bayesian Estimation of ARCH-Type Volatility Models</title><author>Güner, Biliana S. ; Rachev, Svetlozar ; Hsu, John S. J. ; Fabozzi, Frank J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c183f-f3bb46748f2e36bb75a30e216e12c6bacf2572e81b38f7ef1ca9dc64dcf3505e3</frbrgroupid><rsrctype>reference_entrys</rsrctype><prefilter>reference_entrys</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Güner, Biliana S.</creatorcontrib><creatorcontrib>Rachev, Svetlozar</creatorcontrib><creatorcontrib>Hsu, John S. J.</creatorcontrib><creatorcontrib>Fabozzi, Frank J.</creatorcontrib><collection>Credo Reference 500+</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Güner, Biliana S.</au><au>Rachev, Svetlozar</au><au>Hsu, John S. J.</au><au>Fabozzi, Frank J.</au><au>Fabozzi, Frank J.</au><format>book</format><genre>chapter</genre><ristype>GEN</ristype><atitle>Bayesian Estimation of ARCH-Type Volatility Models</atitle><btitle>Encyclopedia of Financial Models</btitle><date>2013</date><risdate>2013</risdate><isbn>9781118006733</isbn><isbn>1118006739</isbn><eisbn>9781118182635</eisbn><eisbn>1118182634</eisbn><abstract>Empirical evidence abounds that asset returns exhibit characteristics such as volatility clustering, asymmetry, and heavy‐tailedness. Volatility clustering describes the tendency of returns to alternate between periods of high volatility and low volatility. In addition, volatility responds asymmetrically to positive and negative return shocks—it tends to be higher when the market falls than when it rises. The nonconstancy of volatility has been suggested as an underlying reason for returns’ fat tails. Volatility models attempt to systematically explain these stylized facts about asset returns. The Bayesian methodology offers distinct advantages over the classical framework in estimating volatility models. Parameter restrictions, such as stationarity restriction, are notoriously difficult to handle within the frequentist setting and straightforward to implement in the Bayesian one. The MCMC numerical simulation methods facilitate greatly the estimation of complex volatility models, such as Markov‐switching volatility models.</abstract><cop>Hoboken, NJ, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/9781118182635.efm0014</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISBN: 9781118006733 |
ispartof | Encyclopedia of Financial Models, 2013 |
issn | |
language | eng |
recordid | cdi_credo_entries_13011621 |
source | O'Reilly Online Learning: Academic/Public Library Edition |
title | Bayesian Estimation of ARCH-Type Volatility Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A37%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-credo_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=chapter&rft.atitle=Bayesian%20Estimation%20of%20ARCH-Type%20Volatility%20Models&rft.btitle=Encyclopedia%20of%20Financial%20Models&rft.au=G%C3%BCner,%20Biliana%20S.&rft.date=2013&rft.isbn=9781118006733&rft.isbn_list=1118006739&rft_id=info:doi/10.1002/9781118182635.efm0014&rft_dat=%3Ccredo_wiley%3E13011621%3C/credo_wiley%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781118182635&rft.eisbn_list=1118182634&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_credo_id=13011621&rfr_iscdi=true |