Basic Principles of Bayesian Analysis

One of the basic mechanisms of learning is assimilating the information arriving from the external environment and then updating the existing knowledge base with that information. This mechanism lies at the heart of the Bayesian framework. A Bayesian decision maker learns by revising beliefs in ligh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Güner, Biliana S., Rachev, Svetlozar T., HSU, John S. J., Fabozzi, Frank J.
Format: Reference Entry
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Güner, Biliana S.
Rachev, Svetlozar T.
HSU, John S. J.
Fabozzi, Frank J.
description One of the basic mechanisms of learning is assimilating the information arriving from the external environment and then updating the existing knowledge base with that information. This mechanism lies at the heart of the Bayesian framework. A Bayesian decision maker learns by revising beliefs in light of the new data that become available. From the Bayesian point of view, probabilities are interpreted as degrees of belief. Therefore, the Bayesian learning process consists of revising probabilities. Contrast this with the way probability is interpreted in the classical (frequentist) statistical theory—as the relative frequency of occurrence of an event in the limit, as the number of observations goes to infinity. Bayes’ theorem provides the formal means of putting that mechanism into action; it is a simple expression combining the knowledge about the distribution of the model parameters and the information about the parameters contained in the data.
doi_str_mv 10.1002/9781118182635.efm0011
format Reference Entry
fullrecord <record><control><sourceid>credo_wiley</sourceid><recordid>TN_cdi_credo_entries_13011618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><credo_id>13011618</credo_id><sourcerecordid>13011618</sourcerecordid><originalsourceid>FETCH-LOGICAL-c183f-ae5a018068a3d07d1f36be8b238f71ba1964c3acf77b931dbe87f9a6bbb6132d3</originalsourceid><addsrcrecordid>eNp1kNtKw0AQhldEUGoeoZAbL1N3Ms3uBkRoiyco6IVeL3uYhZWYlqwg8emNtAoROzfDHL5_-IexKfAZcF5e1lIBgAJVCqxmFN44Bzhi2ah__FtzLiTiKctSeuVDyGouSjxjF0uTosufuti6uG0o5ZuQL01PKZo2X7Sm6VNM5-wkmCZRts8T9nJ787y6L9aPdw-rxbpwoDAUhirDh1tCGfRceggoLClbogoSrIFazB0aF6S0NYIfZjLURlhrBWDpccKudrofsaFedxSoo9aRBq6_XeuRO713_ZMH_Pp_fIxx_Rm3f2G99eHw_bHAYXy6w11HfqOpfe8iJQ04LIjhQ18Gn3vB</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>reference_entry</recordtype></control><display><type>reference_entry</type><title>Basic Principles of Bayesian Analysis</title><source>O'Reilly Online Learning: Academic/Public Library Edition</source><creator>Güner, Biliana S. ; Rachev, Svetlozar T. ; HSU, John S. J. ; Fabozzi, Frank J.</creator><contributor>Fabozzi, Frank J.</contributor><creatorcontrib>Güner, Biliana S. ; Rachev, Svetlozar T. ; HSU, John S. J. ; Fabozzi, Frank J. ; Fabozzi, Frank J.</creatorcontrib><description>One of the basic mechanisms of learning is assimilating the information arriving from the external environment and then updating the existing knowledge base with that information. This mechanism lies at the heart of the Bayesian framework. A Bayesian decision maker learns by revising beliefs in light of the new data that become available. From the Bayesian point of view, probabilities are interpreted as degrees of belief. Therefore, the Bayesian learning process consists of revising probabilities. Contrast this with the way probability is interpreted in the classical (frequentist) statistical theory—as the relative frequency of occurrence of an event in the limit, as the number of observations goes to infinity. Bayes’ theorem provides the formal means of putting that mechanism into action; it is a simple expression combining the knowledge about the distribution of the model parameters and the information about the parameters contained in the data.</description><identifier>ISBN: 9781118006733</identifier><identifier>ISBN: 1118006739</identifier><identifier>EISBN: 9781118182635</identifier><identifier>EISBN: 1118182634</identifier><identifier>DOI: 10.1002/9781118182635.efm0011</identifier><language>eng</language><publisher>Hoboken, NJ, USA: John Wiley &amp; Sons, Inc</publisher><ispartof>Encyclopedia of Financial Models, 2013</ispartof><rights>Wiley ©2013</rights><rights>Copyright © 2013 by Frank J. Fabozzi. All rights reserved.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>127,146,780,784,27923</link.rule.ids></links><search><contributor>Fabozzi, Frank J.</contributor><creatorcontrib>Güner, Biliana S.</creatorcontrib><creatorcontrib>Rachev, Svetlozar T.</creatorcontrib><creatorcontrib>HSU, John S. J.</creatorcontrib><creatorcontrib>Fabozzi, Frank J.</creatorcontrib><title>Basic Principles of Bayesian Analysis</title><title>Encyclopedia of Financial Models</title><description>One of the basic mechanisms of learning is assimilating the information arriving from the external environment and then updating the existing knowledge base with that information. This mechanism lies at the heart of the Bayesian framework. A Bayesian decision maker learns by revising beliefs in light of the new data that become available. From the Bayesian point of view, probabilities are interpreted as degrees of belief. Therefore, the Bayesian learning process consists of revising probabilities. Contrast this with the way probability is interpreted in the classical (frequentist) statistical theory—as the relative frequency of occurrence of an event in the limit, as the number of observations goes to infinity. Bayes’ theorem provides the formal means of putting that mechanism into action; it is a simple expression combining the knowledge about the distribution of the model parameters and the information about the parameters contained in the data.</description><isbn>9781118006733</isbn><isbn>1118006739</isbn><isbn>9781118182635</isbn><isbn>1118182634</isbn><fulltext>true</fulltext><rsrctype>reference_entry</rsrctype><creationdate>2013</creationdate><recordtype>reference_entry</recordtype><recordid>eNp1kNtKw0AQhldEUGoeoZAbL1N3Ms3uBkRoiyco6IVeL3uYhZWYlqwg8emNtAoROzfDHL5_-IexKfAZcF5e1lIBgAJVCqxmFN44Bzhi2ah__FtzLiTiKctSeuVDyGouSjxjF0uTosufuti6uG0o5ZuQL01PKZo2X7Sm6VNM5-wkmCZRts8T9nJ787y6L9aPdw-rxbpwoDAUhirDh1tCGfRceggoLClbogoSrIFazB0aF6S0NYIfZjLURlhrBWDpccKudrofsaFedxSoo9aRBq6_XeuRO713_ZMH_Pp_fIxx_Rm3f2G99eHw_bHAYXy6w11HfqOpfe8iJQ04LIjhQ18Gn3vB</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Güner, Biliana S.</creator><creator>Rachev, Svetlozar T.</creator><creator>HSU, John S. J.</creator><creator>Fabozzi, Frank J.</creator><general>John Wiley &amp; Sons, Inc</general><scope>ADONM</scope></search><sort><creationdate>2013</creationdate><title>Basic Principles of Bayesian Analysis</title><author>Güner, Biliana S. ; Rachev, Svetlozar T. ; HSU, John S. J. ; Fabozzi, Frank J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c183f-ae5a018068a3d07d1f36be8b238f71ba1964c3acf77b931dbe87f9a6bbb6132d3</frbrgroupid><rsrctype>reference_entrys</rsrctype><prefilter>reference_entrys</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Güner, Biliana S.</creatorcontrib><creatorcontrib>Rachev, Svetlozar T.</creatorcontrib><creatorcontrib>HSU, John S. J.</creatorcontrib><creatorcontrib>Fabozzi, Frank J.</creatorcontrib><collection>Credo Reference 500+</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Güner, Biliana S.</au><au>Rachev, Svetlozar T.</au><au>HSU, John S. J.</au><au>Fabozzi, Frank J.</au><au>Fabozzi, Frank J.</au><format>book</format><genre>chapter</genre><ristype>GEN</ristype><atitle>Basic Principles of Bayesian Analysis</atitle><btitle>Encyclopedia of Financial Models</btitle><date>2013</date><risdate>2013</risdate><isbn>9781118006733</isbn><isbn>1118006739</isbn><eisbn>9781118182635</eisbn><eisbn>1118182634</eisbn><abstract>One of the basic mechanisms of learning is assimilating the information arriving from the external environment and then updating the existing knowledge base with that information. This mechanism lies at the heart of the Bayesian framework. A Bayesian decision maker learns by revising beliefs in light of the new data that become available. From the Bayesian point of view, probabilities are interpreted as degrees of belief. Therefore, the Bayesian learning process consists of revising probabilities. Contrast this with the way probability is interpreted in the classical (frequentist) statistical theory—as the relative frequency of occurrence of an event in the limit, as the number of observations goes to infinity. Bayes’ theorem provides the formal means of putting that mechanism into action; it is a simple expression combining the knowledge about the distribution of the model parameters and the information about the parameters contained in the data.</abstract><cop>Hoboken, NJ, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/9781118182635.efm0011</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISBN: 9781118006733
ispartof Encyclopedia of Financial Models, 2013
issn
language eng
recordid cdi_credo_entries_13011618
source O'Reilly Online Learning: Academic/Public Library Edition
title Basic Principles of Bayesian Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A07%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-credo_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=chapter&rft.atitle=Basic%20Principles%20of%20Bayesian%20Analysis&rft.btitle=Encyclopedia%20of%20Financial%20Models&rft.au=G%C3%BCner,%20Biliana%20S.&rft.date=2013&rft.isbn=9781118006733&rft.isbn_list=1118006739&rft_id=info:doi/10.1002/9781118182635.efm0011&rft_dat=%3Ccredo_wiley%3E13011618%3C/credo_wiley%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781118182635&rft.eisbn_list=1118182634&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_credo_id=13011618&rfr_iscdi=true