Basic Principles of Bayesian Analysis
One of the basic mechanisms of learning is assimilating the information arriving from the external environment and then updating the existing knowledge base with that information. This mechanism lies at the heart of the Bayesian framework. A Bayesian decision maker learns by revising beliefs in ligh...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Reference Entry |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Güner, Biliana S. Rachev, Svetlozar T. HSU, John S. J. Fabozzi, Frank J. |
description | One of the basic mechanisms of learning is assimilating the information arriving from the external environment and then updating the existing knowledge base with that information. This mechanism lies at the heart of the Bayesian framework. A Bayesian decision maker learns by revising beliefs in light of the new data that become available. From the Bayesian point of view, probabilities are interpreted as degrees of belief. Therefore, the Bayesian learning process consists of revising probabilities. Contrast this with the way probability is interpreted in the classical (frequentist) statistical theory—as the relative frequency of occurrence of an event in the limit, as the number of observations goes to infinity. Bayes’ theorem provides the formal means of putting that mechanism into action; it is a simple expression combining the knowledge about the distribution of the model parameters and the information about the parameters contained in the data. |
doi_str_mv | 10.1002/9781118182635.efm0011 |
format | Reference Entry |
fullrecord | <record><control><sourceid>credo_wiley</sourceid><recordid>TN_cdi_credo_entries_13011618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><credo_id>13011618</credo_id><sourcerecordid>13011618</sourcerecordid><originalsourceid>FETCH-LOGICAL-c183f-ae5a018068a3d07d1f36be8b238f71ba1964c3acf77b931dbe87f9a6bbb6132d3</originalsourceid><addsrcrecordid>eNp1kNtKw0AQhldEUGoeoZAbL1N3Ms3uBkRoiyco6IVeL3uYhZWYlqwg8emNtAoROzfDHL5_-IexKfAZcF5e1lIBgAJVCqxmFN44Bzhi2ah__FtzLiTiKctSeuVDyGouSjxjF0uTosufuti6uG0o5ZuQL01PKZo2X7Sm6VNM5-wkmCZRts8T9nJ787y6L9aPdw-rxbpwoDAUhirDh1tCGfRceggoLClbogoSrIFazB0aF6S0NYIfZjLURlhrBWDpccKudrofsaFedxSoo9aRBq6_XeuRO713_ZMH_Pp_fIxx_Rm3f2G99eHw_bHAYXy6w11HfqOpfe8iJQ04LIjhQ18Gn3vB</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>reference_entry</recordtype></control><display><type>reference_entry</type><title>Basic Principles of Bayesian Analysis</title><source>O'Reilly Online Learning: Academic/Public Library Edition</source><creator>Güner, Biliana S. ; Rachev, Svetlozar T. ; HSU, John S. J. ; Fabozzi, Frank J.</creator><contributor>Fabozzi, Frank J.</contributor><creatorcontrib>Güner, Biliana S. ; Rachev, Svetlozar T. ; HSU, John S. J. ; Fabozzi, Frank J. ; Fabozzi, Frank J.</creatorcontrib><description>One of the basic mechanisms of learning is assimilating the information arriving from the external environment and then updating the existing knowledge base with that information. This mechanism lies at the heart of the Bayesian framework. A Bayesian decision maker learns by revising beliefs in light of the new data that become available. From the Bayesian point of view, probabilities are interpreted as degrees of belief. Therefore, the Bayesian learning process consists of revising probabilities. Contrast this with the way probability is interpreted in the classical (frequentist) statistical theory—as the relative frequency of occurrence of an event in the limit, as the number of observations goes to infinity. Bayes’ theorem provides the formal means of putting that mechanism into action; it is a simple expression combining the knowledge about the distribution of the model parameters and the information about the parameters contained in the data.</description><identifier>ISBN: 9781118006733</identifier><identifier>ISBN: 1118006739</identifier><identifier>EISBN: 9781118182635</identifier><identifier>EISBN: 1118182634</identifier><identifier>DOI: 10.1002/9781118182635.efm0011</identifier><language>eng</language><publisher>Hoboken, NJ, USA: John Wiley & Sons, Inc</publisher><ispartof>Encyclopedia of Financial Models, 2013</ispartof><rights>Wiley ©2013</rights><rights>Copyright © 2013 by Frank J. Fabozzi. All rights reserved.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>127,146,780,784,27923</link.rule.ids></links><search><contributor>Fabozzi, Frank J.</contributor><creatorcontrib>Güner, Biliana S.</creatorcontrib><creatorcontrib>Rachev, Svetlozar T.</creatorcontrib><creatorcontrib>HSU, John S. J.</creatorcontrib><creatorcontrib>Fabozzi, Frank J.</creatorcontrib><title>Basic Principles of Bayesian Analysis</title><title>Encyclopedia of Financial Models</title><description>One of the basic mechanisms of learning is assimilating the information arriving from the external environment and then updating the existing knowledge base with that information. This mechanism lies at the heart of the Bayesian framework. A Bayesian decision maker learns by revising beliefs in light of the new data that become available. From the Bayesian point of view, probabilities are interpreted as degrees of belief. Therefore, the Bayesian learning process consists of revising probabilities. Contrast this with the way probability is interpreted in the classical (frequentist) statistical theory—as the relative frequency of occurrence of an event in the limit, as the number of observations goes to infinity. Bayes’ theorem provides the formal means of putting that mechanism into action; it is a simple expression combining the knowledge about the distribution of the model parameters and the information about the parameters contained in the data.</description><isbn>9781118006733</isbn><isbn>1118006739</isbn><isbn>9781118182635</isbn><isbn>1118182634</isbn><fulltext>true</fulltext><rsrctype>reference_entry</rsrctype><creationdate>2013</creationdate><recordtype>reference_entry</recordtype><recordid>eNp1kNtKw0AQhldEUGoeoZAbL1N3Ms3uBkRoiyco6IVeL3uYhZWYlqwg8emNtAoROzfDHL5_-IexKfAZcF5e1lIBgAJVCqxmFN44Bzhi2ah__FtzLiTiKctSeuVDyGouSjxjF0uTosufuti6uG0o5ZuQL01PKZo2X7Sm6VNM5-wkmCZRts8T9nJ787y6L9aPdw-rxbpwoDAUhirDh1tCGfRceggoLClbogoSrIFazB0aF6S0NYIfZjLURlhrBWDpccKudrofsaFedxSoo9aRBq6_XeuRO713_ZMH_Pp_fIxx_Rm3f2G99eHw_bHAYXy6w11HfqOpfe8iJQ04LIjhQ18Gn3vB</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Güner, Biliana S.</creator><creator>Rachev, Svetlozar T.</creator><creator>HSU, John S. J.</creator><creator>Fabozzi, Frank J.</creator><general>John Wiley & Sons, Inc</general><scope>ADONM</scope></search><sort><creationdate>2013</creationdate><title>Basic Principles of Bayesian Analysis</title><author>Güner, Biliana S. ; Rachev, Svetlozar T. ; HSU, John S. J. ; Fabozzi, Frank J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c183f-ae5a018068a3d07d1f36be8b238f71ba1964c3acf77b931dbe87f9a6bbb6132d3</frbrgroupid><rsrctype>reference_entrys</rsrctype><prefilter>reference_entrys</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Güner, Biliana S.</creatorcontrib><creatorcontrib>Rachev, Svetlozar T.</creatorcontrib><creatorcontrib>HSU, John S. J.</creatorcontrib><creatorcontrib>Fabozzi, Frank J.</creatorcontrib><collection>Credo Reference 500+</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Güner, Biliana S.</au><au>Rachev, Svetlozar T.</au><au>HSU, John S. J.</au><au>Fabozzi, Frank J.</au><au>Fabozzi, Frank J.</au><format>book</format><genre>chapter</genre><ristype>GEN</ristype><atitle>Basic Principles of Bayesian Analysis</atitle><btitle>Encyclopedia of Financial Models</btitle><date>2013</date><risdate>2013</risdate><isbn>9781118006733</isbn><isbn>1118006739</isbn><eisbn>9781118182635</eisbn><eisbn>1118182634</eisbn><abstract>One of the basic mechanisms of learning is assimilating the information arriving from the external environment and then updating the existing knowledge base with that information. This mechanism lies at the heart of the Bayesian framework. A Bayesian decision maker learns by revising beliefs in light of the new data that become available. From the Bayesian point of view, probabilities are interpreted as degrees of belief. Therefore, the Bayesian learning process consists of revising probabilities. Contrast this with the way probability is interpreted in the classical (frequentist) statistical theory—as the relative frequency of occurrence of an event in the limit, as the number of observations goes to infinity. Bayes’ theorem provides the formal means of putting that mechanism into action; it is a simple expression combining the knowledge about the distribution of the model parameters and the information about the parameters contained in the data.</abstract><cop>Hoboken, NJ, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/9781118182635.efm0011</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISBN: 9781118006733 |
ispartof | Encyclopedia of Financial Models, 2013 |
issn | |
language | eng |
recordid | cdi_credo_entries_13011618 |
source | O'Reilly Online Learning: Academic/Public Library Edition |
title | Basic Principles of Bayesian Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A07%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-credo_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=chapter&rft.atitle=Basic%20Principles%20of%20Bayesian%20Analysis&rft.btitle=Encyclopedia%20of%20Financial%20Models&rft.au=G%C3%BCner,%20Biliana%20S.&rft.date=2013&rft.isbn=9781118006733&rft.isbn_list=1118006739&rft_id=info:doi/10.1002/9781118182635.efm0011&rft_dat=%3Ccredo_wiley%3E13011618%3C/credo_wiley%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781118182635&rft.eisbn_list=1118182634&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_credo_id=13011618&rfr_iscdi=true |