An improved genetic algorithm with dynamic topology简
The genetic algorithm(GA) is a nature-inspired evolutionary algorithm to find optima in search space via the interaction of individuals. Recently, researchers demonstrated that the interaction topology plays an important role in information exchange among individuals of evolutionary algorithm. In th...
Gespeichert in:
Veröffentlicht in: | 中国物理B:英文版 2016 (12), p.587-593 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 593 |
---|---|
container_issue | 12 |
container_start_page | 587 |
container_title | 中国物理B:英文版 |
container_volume | |
creator | 蔡开泉 唐焱武 张学军 管祥民 |
description | The genetic algorithm(GA) is a nature-inspired evolutionary algorithm to find optima in search space via the interaction of individuals. Recently, researchers demonstrated that the interaction topology plays an important role in information exchange among individuals of evolutionary algorithm. In this paper, we investigate the effect of different network topologies adopted to represent the interaction structures. It is found that GA with a high-density topology ends up more likely with an unsatisfactory solution, contrarily, a low-density topology can impede convergence. Consequently, we propose an improved GA with dynamic topology, named DT-GA, in which the topology structure varies dynamically along with the fitness evolution. Several experiments executed with 15 well-known test functions have illustrated that DT-GA outperforms other test GAs for making a balance of convergence speed and optimum quality. Our work may have implications in the combination of complex networks and computational intelligence. |
format | Article |
fullrecord | <record><control><sourceid>chongqing</sourceid><recordid>TN_cdi_chongqing_primary_90718776504849544950485656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>90718776504849544950485656</cqvip_id><sourcerecordid>90718776504849544950485656</sourcerecordid><originalsourceid>FETCH-chongqing_primary_907187765048495449504856563</originalsourceid><addsrcrecordid>eNqdi0sKwjAARIMoWD93yAUKSfPtUkTxAO5LaNM00iQ1LUp3nshreQ2z8AQuZt7wYBYgKxCTOZGELkGGuaA5RoyvwWYcbwhxjAqSAX7w0LohhoduoNFeT7aGqjch2qlz8JkaNrNXLukpDKEPZv68XzuwalU_6v2PW0DOp-vxktdd8OZuvamGaJ2Kc1UigaUQnCEqacloSlqMM07-e30BWiE-dg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An improved genetic algorithm with dynamic topology简</title><source>IOP Publishing Journals</source><creator>蔡开泉 唐焱武 张学军 管祥民</creator><creatorcontrib>蔡开泉 唐焱武 张学军 管祥民</creatorcontrib><description>The genetic algorithm(GA) is a nature-inspired evolutionary algorithm to find optima in search space via the interaction of individuals. Recently, researchers demonstrated that the interaction topology plays an important role in information exchange among individuals of evolutionary algorithm. In this paper, we investigate the effect of different network topologies adopted to represent the interaction structures. It is found that GA with a high-density topology ends up more likely with an unsatisfactory solution, contrarily, a low-density topology can impede convergence. Consequently, we propose an improved GA with dynamic topology, named DT-GA, in which the topology structure varies dynamically along with the fitness evolution. Several experiments executed with 15 well-known test functions have illustrated that DT-GA outperforms other test GAs for making a balance of convergence speed and optimum quality. Our work may have implications in the combination of complex networks and computational intelligence.</description><identifier>ISSN: 1674-1056</identifier><identifier>EISSN: 2058-3834</identifier><language>eng</language><ispartof>中国物理B:英文版, 2016 (12), p.587-593</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85823A/85823A.jpg</thumbnail><link.rule.ids>314,776,780,4010</link.rule.ids></links><search><creatorcontrib>蔡开泉 唐焱武 张学军 管祥民</creatorcontrib><title>An improved genetic algorithm with dynamic topology简</title><title>中国物理B:英文版</title><addtitle>Chinese Physics B</addtitle><description>The genetic algorithm(GA) is a nature-inspired evolutionary algorithm to find optima in search space via the interaction of individuals. Recently, researchers demonstrated that the interaction topology plays an important role in information exchange among individuals of evolutionary algorithm. In this paper, we investigate the effect of different network topologies adopted to represent the interaction structures. It is found that GA with a high-density topology ends up more likely with an unsatisfactory solution, contrarily, a low-density topology can impede convergence. Consequently, we propose an improved GA with dynamic topology, named DT-GA, in which the topology structure varies dynamically along with the fitness evolution. Several experiments executed with 15 well-known test functions have illustrated that DT-GA outperforms other test GAs for making a balance of convergence speed and optimum quality. Our work may have implications in the combination of complex networks and computational intelligence.</description><issn>1674-1056</issn><issn>2058-3834</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqdi0sKwjAARIMoWD93yAUKSfPtUkTxAO5LaNM00iQ1LUp3nshreQ2z8AQuZt7wYBYgKxCTOZGELkGGuaA5RoyvwWYcbwhxjAqSAX7w0LohhoduoNFeT7aGqjch2qlz8JkaNrNXLukpDKEPZv68XzuwalU_6v2PW0DOp-vxktdd8OZuvamGaJ2Kc1UigaUQnCEqacloSlqMM07-e30BWiE-dg</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>蔡开泉 唐焱武 张学军 管祥民</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope></search><sort><creationdate>2016</creationdate><title>An improved genetic algorithm with dynamic topology简</title><author>蔡开泉 唐焱武 张学军 管祥民</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-chongqing_primary_907187765048495449504856563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>蔡开泉 唐焱武 张学军 管祥民</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><jtitle>中国物理B:英文版</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>蔡开泉 唐焱武 张学军 管祥民</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An improved genetic algorithm with dynamic topology简</atitle><jtitle>中国物理B:英文版</jtitle><addtitle>Chinese Physics B</addtitle><date>2016</date><risdate>2016</risdate><issue>12</issue><spage>587</spage><epage>593</epage><pages>587-593</pages><issn>1674-1056</issn><eissn>2058-3834</eissn><abstract>The genetic algorithm(GA) is a nature-inspired evolutionary algorithm to find optima in search space via the interaction of individuals. Recently, researchers demonstrated that the interaction topology plays an important role in information exchange among individuals of evolutionary algorithm. In this paper, we investigate the effect of different network topologies adopted to represent the interaction structures. It is found that GA with a high-density topology ends up more likely with an unsatisfactory solution, contrarily, a low-density topology can impede convergence. Consequently, we propose an improved GA with dynamic topology, named DT-GA, in which the topology structure varies dynamically along with the fitness evolution. Several experiments executed with 15 well-known test functions have illustrated that DT-GA outperforms other test GAs for making a balance of convergence speed and optimum quality. Our work may have implications in the combination of complex networks and computational intelligence.</abstract></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-1056 |
ispartof | 中国物理B:英文版, 2016 (12), p.587-593 |
issn | 1674-1056 2058-3834 |
language | eng |
recordid | cdi_chongqing_primary_90718776504849544950485656 |
source | IOP Publishing Journals |
title | An improved genetic algorithm with dynamic topology简 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T00%3A44%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-chongqing&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20improved%20genetic%20algorithm%20with%20dynamic%20topology%E7%AE%80&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%89%A9%E7%90%86B%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E8%94%A1%E5%BC%80%E6%B3%89%20%E5%94%90%E7%84%B1%E6%AD%A6%20%E5%BC%A0%E5%AD%A6%E5%86%9B%20%E7%AE%A1%E7%A5%A5%E6%B0%91&rft.date=2016&rft.issue=12&rft.spage=587&rft.epage=593&rft.pages=587-593&rft.issn=1674-1056&rft.eissn=2058-3834&rft_id=info:doi/&rft_dat=%3Cchongqing%3E90718776504849544950485656%3C/chongqing%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=90718776504849544950485656&rfr_iscdi=true |