An improved genetic algorithm with dynamic topology简

The genetic algorithm(GA) is a nature-inspired evolutionary algorithm to find optima in search space via the interaction of individuals. Recently, researchers demonstrated that the interaction topology plays an important role in information exchange among individuals of evolutionary algorithm. In th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:中国物理B:英文版 2016 (12), p.587-593
1. Verfasser: 蔡开泉 唐焱武 张学军 管祥民
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 593
container_issue 12
container_start_page 587
container_title 中国物理B:英文版
container_volume
creator 蔡开泉 唐焱武 张学军 管祥民
description The genetic algorithm(GA) is a nature-inspired evolutionary algorithm to find optima in search space via the interaction of individuals. Recently, researchers demonstrated that the interaction topology plays an important role in information exchange among individuals of evolutionary algorithm. In this paper, we investigate the effect of different network topologies adopted to represent the interaction structures. It is found that GA with a high-density topology ends up more likely with an unsatisfactory solution, contrarily, a low-density topology can impede convergence. Consequently, we propose an improved GA with dynamic topology, named DT-GA, in which the topology structure varies dynamically along with the fitness evolution. Several experiments executed with 15 well-known test functions have illustrated that DT-GA outperforms other test GAs for making a balance of convergence speed and optimum quality. Our work may have implications in the combination of complex networks and computational intelligence.
format Article
fullrecord <record><control><sourceid>chongqing</sourceid><recordid>TN_cdi_chongqing_primary_90718776504849544950485656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>90718776504849544950485656</cqvip_id><sourcerecordid>90718776504849544950485656</sourcerecordid><originalsourceid>FETCH-chongqing_primary_907187765048495449504856563</originalsourceid><addsrcrecordid>eNqdi0sKwjAARIMoWD93yAUKSfPtUkTxAO5LaNM00iQ1LUp3nshreQ2z8AQuZt7wYBYgKxCTOZGELkGGuaA5RoyvwWYcbwhxjAqSAX7w0LohhoduoNFeT7aGqjch2qlz8JkaNrNXLukpDKEPZv68XzuwalU_6v2PW0DOp-vxktdd8OZuvamGaJ2Kc1UigaUQnCEqacloSlqMM07-e30BWiE-dg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An improved genetic algorithm with dynamic topology简</title><source>IOP Publishing Journals</source><creator>蔡开泉 唐焱武 张学军 管祥民</creator><creatorcontrib>蔡开泉 唐焱武 张学军 管祥民</creatorcontrib><description>The genetic algorithm(GA) is a nature-inspired evolutionary algorithm to find optima in search space via the interaction of individuals. Recently, researchers demonstrated that the interaction topology plays an important role in information exchange among individuals of evolutionary algorithm. In this paper, we investigate the effect of different network topologies adopted to represent the interaction structures. It is found that GA with a high-density topology ends up more likely with an unsatisfactory solution, contrarily, a low-density topology can impede convergence. Consequently, we propose an improved GA with dynamic topology, named DT-GA, in which the topology structure varies dynamically along with the fitness evolution. Several experiments executed with 15 well-known test functions have illustrated that DT-GA outperforms other test GAs for making a balance of convergence speed and optimum quality. Our work may have implications in the combination of complex networks and computational intelligence.</description><identifier>ISSN: 1674-1056</identifier><identifier>EISSN: 2058-3834</identifier><language>eng</language><ispartof>中国物理B:英文版, 2016 (12), p.587-593</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85823A/85823A.jpg</thumbnail><link.rule.ids>314,776,780,4010</link.rule.ids></links><search><creatorcontrib>蔡开泉 唐焱武 张学军 管祥民</creatorcontrib><title>An improved genetic algorithm with dynamic topology简</title><title>中国物理B:英文版</title><addtitle>Chinese Physics B</addtitle><description>The genetic algorithm(GA) is a nature-inspired evolutionary algorithm to find optima in search space via the interaction of individuals. Recently, researchers demonstrated that the interaction topology plays an important role in information exchange among individuals of evolutionary algorithm. In this paper, we investigate the effect of different network topologies adopted to represent the interaction structures. It is found that GA with a high-density topology ends up more likely with an unsatisfactory solution, contrarily, a low-density topology can impede convergence. Consequently, we propose an improved GA with dynamic topology, named DT-GA, in which the topology structure varies dynamically along with the fitness evolution. Several experiments executed with 15 well-known test functions have illustrated that DT-GA outperforms other test GAs for making a balance of convergence speed and optimum quality. Our work may have implications in the combination of complex networks and computational intelligence.</description><issn>1674-1056</issn><issn>2058-3834</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqdi0sKwjAARIMoWD93yAUKSfPtUkTxAO5LaNM00iQ1LUp3nshreQ2z8AQuZt7wYBYgKxCTOZGELkGGuaA5RoyvwWYcbwhxjAqSAX7w0LohhoduoNFeT7aGqjch2qlz8JkaNrNXLukpDKEPZv68XzuwalU_6v2PW0DOp-vxktdd8OZuvamGaJ2Kc1UigaUQnCEqacloSlqMM07-e30BWiE-dg</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>蔡开泉 唐焱武 张学军 管祥民</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope></search><sort><creationdate>2016</creationdate><title>An improved genetic algorithm with dynamic topology简</title><author>蔡开泉 唐焱武 张学军 管祥民</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-chongqing_primary_907187765048495449504856563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>蔡开泉 唐焱武 张学军 管祥民</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><jtitle>中国物理B:英文版</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>蔡开泉 唐焱武 张学军 管祥民</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An improved genetic algorithm with dynamic topology简</atitle><jtitle>中国物理B:英文版</jtitle><addtitle>Chinese Physics B</addtitle><date>2016</date><risdate>2016</risdate><issue>12</issue><spage>587</spage><epage>593</epage><pages>587-593</pages><issn>1674-1056</issn><eissn>2058-3834</eissn><abstract>The genetic algorithm(GA) is a nature-inspired evolutionary algorithm to find optima in search space via the interaction of individuals. Recently, researchers demonstrated that the interaction topology plays an important role in information exchange among individuals of evolutionary algorithm. In this paper, we investigate the effect of different network topologies adopted to represent the interaction structures. It is found that GA with a high-density topology ends up more likely with an unsatisfactory solution, contrarily, a low-density topology can impede convergence. Consequently, we propose an improved GA with dynamic topology, named DT-GA, in which the topology structure varies dynamically along with the fitness evolution. Several experiments executed with 15 well-known test functions have illustrated that DT-GA outperforms other test GAs for making a balance of convergence speed and optimum quality. Our work may have implications in the combination of complex networks and computational intelligence.</abstract></addata></record>
fulltext fulltext
identifier ISSN: 1674-1056
ispartof 中国物理B:英文版, 2016 (12), p.587-593
issn 1674-1056
2058-3834
language eng
recordid cdi_chongqing_primary_90718776504849544950485656
source IOP Publishing Journals
title An improved genetic algorithm with dynamic topology简
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T00%3A44%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-chongqing&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20improved%20genetic%20algorithm%20with%20dynamic%20topology%E7%AE%80&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%89%A9%E7%90%86B%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E8%94%A1%E5%BC%80%E6%B3%89%20%E5%94%90%E7%84%B1%E6%AD%A6%20%E5%BC%A0%E5%AD%A6%E5%86%9B%20%E7%AE%A1%E7%A5%A5%E6%B0%91&rft.date=2016&rft.issue=12&rft.spage=587&rft.epage=593&rft.pages=587-593&rft.issn=1674-1056&rft.eissn=2058-3834&rft_id=info:doi/&rft_dat=%3Cchongqing%3E90718776504849544950485656%3C/chongqing%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=90718776504849544950485656&rfr_iscdi=true