Low Complexity Energy Optimization Algorithm for Massive MIMO systems

We consider the problem of nearly optimal energy efficiency in massive(Multiinput Multi-output) MIMO systems. Considering the correlated channel in practice, we derive the ergodic expression with zero-forcing precoding and analyze the simplified antennas selection method. Aiming at optimizing the en...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:China communications 2015-12, Vol.12 (S1), p.74-82
Hauptverfasser: Yuan, Jingya, Li, Xiaohui, Hei, Yongqiang, Fu, Weihong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 82
container_issue S1
container_start_page 74
container_title China communications
container_volume 12
creator Yuan, Jingya
Li, Xiaohui
Hei, Yongqiang
Fu, Weihong
description We consider the problem of nearly optimal energy efficiency in massive(Multiinput Multi-output) MIMO systems. Considering the correlated channel in practice, we derive the ergodic expression with zero-forcing precoding and analyze the simplified antennas selection method. Aiming at optimizing the energy efficiency, the closed form expressions of the nearly optimal number of transmit antennas and transmit power are given under the circuit consumption model. The joint solution of the number of transmit antennas and transmit power was replaced to only solve transmit power. Based on the expression only related with transmit power, we give an energy efficiency optimization algorithm. The simulation results show that the proposed algorithm can achieve nearly optimal energy efficiency with fast convergence speed.
doi_str_mv 10.1109/CC.2015.7386173
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_chongqing_primary_90718479504849538349484948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>90718479504849538349484948</cqvip_id><ieee_id>7386173</ieee_id><sourcerecordid>10_1109_CC_2015_7386173</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-ffa70fa47eef5ee26cbe790661610f7e3fd85996cbe153ed4723b3b3a29060c53</originalsourceid><addsrcrecordid>eNpFj8tuwjAQRb1opSLKuotu_AMBO34vkUUfEohNu45MGAdXJKZx1Db9-iYC0ZnFjGbOvdJF6IGSOaXELKyd54SKuWJaUsVu0IRKxTLBubpDs5Q-yFBaSibzCVqt4ze2sT4d4Sd0PV410FY93p66UIdf14XY4OWxim3oDjX2scUbl1L4Arx53Wxx6lMHdbpHt94dE8wuc4ren1Zv9iVbb59f7XKdlbkwXea9U8Q7rgC8AMhluQNliJRUUuIVML_XwpjxTAWDPVc52w3t8gEipWBTtDj7lm1MqQVfnNpQu7YvKCnG8IW1xRi-uIQfFI9nRQCAK_3_ZRe_Q2yqz9BUV8QQRTVXRhCuuRFMM27GjWv2B_YVZpk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Low Complexity Energy Optimization Algorithm for Massive MIMO systems</title><source>IEEE Electronic Library (IEL)</source><creator>Yuan, Jingya ; Li, Xiaohui ; Hei, Yongqiang ; Fu, Weihong</creator><creatorcontrib>Yuan, Jingya ; Li, Xiaohui ; Hei, Yongqiang ; Fu, Weihong</creatorcontrib><description>We consider the problem of nearly optimal energy efficiency in massive(Multiinput Multi-output) MIMO systems. Considering the correlated channel in practice, we derive the ergodic expression with zero-forcing precoding and analyze the simplified antennas selection method. Aiming at optimizing the energy efficiency, the closed form expressions of the nearly optimal number of transmit antennas and transmit power are given under the circuit consumption model. The joint solution of the number of transmit antennas and transmit power was replaced to only solve transmit power. Based on the expression only related with transmit power, we give an energy efficiency optimization algorithm. The simulation results show that the proposed algorithm can achieve nearly optimal energy efficiency with fast convergence speed.</description><identifier>ISSN: 1673-5447</identifier><identifier>DOI: 10.1109/CC.2015.7386173</identifier><identifier>CODEN: CCHOBE</identifier><language>eng</language><publisher>China Institute of Communications</publisher><subject>Algorithm design and analysis ; antenna number optimization ; Complexity theory ; efficiency;ergodic ; energy ; Energy efficiency ; ergodic expression ; expression;fraction ; fraction program ; MIMO ; number ; Optimization ; optimization;antenna ; power optimization ; program;power ; Transmitting antennas</subject><ispartof>China communications, 2015-12, Vol.12 (S1), p.74-82</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/89450X/89450X.jpg</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7386173$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7386173$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yuan, Jingya</creatorcontrib><creatorcontrib>Li, Xiaohui</creatorcontrib><creatorcontrib>Hei, Yongqiang</creatorcontrib><creatorcontrib>Fu, Weihong</creatorcontrib><title>Low Complexity Energy Optimization Algorithm for Massive MIMO systems</title><title>China communications</title><addtitle>ChinaComm</addtitle><addtitle>China Communications</addtitle><description>We consider the problem of nearly optimal energy efficiency in massive(Multiinput Multi-output) MIMO systems. Considering the correlated channel in practice, we derive the ergodic expression with zero-forcing precoding and analyze the simplified antennas selection method. Aiming at optimizing the energy efficiency, the closed form expressions of the nearly optimal number of transmit antennas and transmit power are given under the circuit consumption model. The joint solution of the number of transmit antennas and transmit power was replaced to only solve transmit power. Based on the expression only related with transmit power, we give an energy efficiency optimization algorithm. The simulation results show that the proposed algorithm can achieve nearly optimal energy efficiency with fast convergence speed.</description><subject>Algorithm design and analysis</subject><subject>antenna number optimization</subject><subject>Complexity theory</subject><subject>efficiency;ergodic</subject><subject>energy</subject><subject>Energy efficiency</subject><subject>ergodic expression</subject><subject>expression;fraction</subject><subject>fraction program</subject><subject>MIMO</subject><subject>number</subject><subject>Optimization</subject><subject>optimization;antenna</subject><subject>power optimization</subject><subject>program;power</subject><subject>Transmitting antennas</subject><issn>1673-5447</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFj8tuwjAQRb1opSLKuotu_AMBO34vkUUfEohNu45MGAdXJKZx1Db9-iYC0ZnFjGbOvdJF6IGSOaXELKyd54SKuWJaUsVu0IRKxTLBubpDs5Q-yFBaSibzCVqt4ze2sT4d4Sd0PV410FY93p66UIdf14XY4OWxim3oDjX2scUbl1L4Arx53Wxx6lMHdbpHt94dE8wuc4ren1Zv9iVbb59f7XKdlbkwXea9U8Q7rgC8AMhluQNliJRUUuIVML_XwpjxTAWDPVc52w3t8gEipWBTtDj7lm1MqQVfnNpQu7YvKCnG8IW1xRi-uIQfFI9nRQCAK_3_ZRe_Q2yqz9BUV8QQRTVXRhCuuRFMM27GjWv2B_YVZpk</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Yuan, Jingya</creator><creator>Li, Xiaohui</creator><creator>Hei, Yongqiang</creator><creator>Fu, Weihong</creator><general>China Institute of Communications</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20151201</creationdate><title>Low Complexity Energy Optimization Algorithm for Massive MIMO systems</title><author>Yuan, Jingya ; Li, Xiaohui ; Hei, Yongqiang ; Fu, Weihong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-ffa70fa47eef5ee26cbe790661610f7e3fd85996cbe153ed4723b3b3a29060c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithm design and analysis</topic><topic>antenna number optimization</topic><topic>Complexity theory</topic><topic>efficiency;ergodic</topic><topic>energy</topic><topic>Energy efficiency</topic><topic>ergodic expression</topic><topic>expression;fraction</topic><topic>fraction program</topic><topic>MIMO</topic><topic>number</topic><topic>Optimization</topic><topic>optimization;antenna</topic><topic>power optimization</topic><topic>program;power</topic><topic>Transmitting antennas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Jingya</creatorcontrib><creatorcontrib>Li, Xiaohui</creatorcontrib><creatorcontrib>Hei, Yongqiang</creatorcontrib><creatorcontrib>Fu, Weihong</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>China communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yuan, Jingya</au><au>Li, Xiaohui</au><au>Hei, Yongqiang</au><au>Fu, Weihong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low Complexity Energy Optimization Algorithm for Massive MIMO systems</atitle><jtitle>China communications</jtitle><stitle>ChinaComm</stitle><addtitle>China Communications</addtitle><date>2015-12-01</date><risdate>2015</risdate><volume>12</volume><issue>S1</issue><spage>74</spage><epage>82</epage><pages>74-82</pages><issn>1673-5447</issn><coden>CCHOBE</coden><abstract>We consider the problem of nearly optimal energy efficiency in massive(Multiinput Multi-output) MIMO systems. Considering the correlated channel in practice, we derive the ergodic expression with zero-forcing precoding and analyze the simplified antennas selection method. Aiming at optimizing the energy efficiency, the closed form expressions of the nearly optimal number of transmit antennas and transmit power are given under the circuit consumption model. The joint solution of the number of transmit antennas and transmit power was replaced to only solve transmit power. Based on the expression only related with transmit power, we give an energy efficiency optimization algorithm. The simulation results show that the proposed algorithm can achieve nearly optimal energy efficiency with fast convergence speed.</abstract><pub>China Institute of Communications</pub><doi>10.1109/CC.2015.7386173</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1673-5447
ispartof China communications, 2015-12, Vol.12 (S1), p.74-82
issn 1673-5447
language eng
recordid cdi_chongqing_primary_90718479504849538349484948
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
antenna number optimization
Complexity theory
efficiency
ergodic
energy
Energy efficiency
ergodic expression
expression
fraction
fraction program
MIMO
number
Optimization
optimization
antenna
power optimization
program
power
Transmitting antennas
title Low Complexity Energy Optimization Algorithm for Massive MIMO systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A02%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20Complexity%20Energy%20Optimization%20Algorithm%20for%20Massive%20MIMO%20systems&rft.jtitle=China%20communications&rft.au=Yuan,%20Jingya&rft.date=2015-12-01&rft.volume=12&rft.issue=S1&rft.spage=74&rft.epage=82&rft.pages=74-82&rft.issn=1673-5447&rft.coden=CCHOBE&rft_id=info:doi/10.1109/CC.2015.7386173&rft_dat=%3Ccrossref_RIE%3E10_1109_CC_2015_7386173%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=90718479504849538349484948&rft_ieee_id=7386173&rfr_iscdi=true