Linear Complexity of Least Significant Bit of Polynomial Quotients

Binary sequences with large linear complexity have been found many applications in communication systems.We determine the linear complexity of a family of p~2-periodic binary sequences derived from polynomial quotients modulo an odd prime p.Results show that these sequences have high linear complexi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:电子学报:英文版 2017 (3), p.573-578
1. Verfasser: ZHAO Chun’e MA Wenping YAN Tongjiang SUN Yuhua
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 578
container_issue 3
container_start_page 573
container_title 电子学报:英文版
container_volume
creator ZHAO Chun’e MA Wenping YAN Tongjiang SUN Yuhua
description Binary sequences with large linear complexity have been found many applications in communication systems.We determine the linear complexity of a family of p~2-periodic binary sequences derived from polynomial quotients modulo an odd prime p.Results show that these sequences have high linear complexity,which means they can resist the linear attack method.
format Article
fullrecord <record><control><sourceid>chongqing</sourceid><recordid>TN_cdi_chongqing_primary_69689088504849554851484956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>69689088504849554851484956</cqvip_id><sourcerecordid>69689088504849554851484956</sourcerecordid><originalsourceid>FETCH-chongqing_primary_696890885048495548514849563</originalsourceid><addsrcrecordid>eNqdi0sKwjAUALNQsGjvkAsU0uZjum1RXHSh6F5iSeuD9KU2EeztRfEErmZgmAVJclYUmVCSr0gaAtyYzLnaSsUTUjWA1ky09sPo7AviTH1HG2tCpGfoETpoDUZaQfyEo3cz-gGMo6enj2Axhg1ZdsYFm_64Jny_u9SHrL177B-A_XWcYDDTfFWl0iXTWjKhRSml0DL_muL_XW87NkCS</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Linear Complexity of Least Significant Bit of Polynomial Quotients</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>ZHAO Chun’e MA Wenping YAN Tongjiang SUN Yuhua</creator><creatorcontrib>ZHAO Chun’e MA Wenping YAN Tongjiang SUN Yuhua</creatorcontrib><description>Binary sequences with large linear complexity have been found many applications in communication systems.We determine the linear complexity of a family of p~2-periodic binary sequences derived from polynomial quotients modulo an odd prime p.Results show that these sequences have high linear complexity,which means they can resist the linear attack method.</description><identifier>ISSN: 1022-4653</identifier><language>eng</language><ispartof>电子学报:英文版, 2017 (3), p.573-578</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86774X/86774X.jpg</thumbnail><link.rule.ids>314,776,780,4009</link.rule.ids></links><search><creatorcontrib>ZHAO Chun’e MA Wenping YAN Tongjiang SUN Yuhua</creatorcontrib><title>Linear Complexity of Least Significant Bit of Polynomial Quotients</title><title>电子学报:英文版</title><addtitle>Chinese Journal of Electronics</addtitle><description>Binary sequences with large linear complexity have been found many applications in communication systems.We determine the linear complexity of a family of p~2-periodic binary sequences derived from polynomial quotients modulo an odd prime p.Results show that these sequences have high linear complexity,which means they can resist the linear attack method.</description><issn>1022-4653</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqdi0sKwjAUALNQsGjvkAsU0uZjum1RXHSh6F5iSeuD9KU2EeztRfEErmZgmAVJclYUmVCSr0gaAtyYzLnaSsUTUjWA1ky09sPo7AviTH1HG2tCpGfoETpoDUZaQfyEo3cz-gGMo6enj2Axhg1ZdsYFm_64Jny_u9SHrL177B-A_XWcYDDTfFWl0iXTWjKhRSml0DL_muL_XW87NkCS</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>ZHAO Chun’e MA Wenping YAN Tongjiang SUN Yuhua</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope></search><sort><creationdate>2017</creationdate><title>Linear Complexity of Least Significant Bit of Polynomial Quotients</title><author>ZHAO Chun’e MA Wenping YAN Tongjiang SUN Yuhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-chongqing_primary_696890885048495548514849563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ZHAO Chun’e MA Wenping YAN Tongjiang SUN Yuhua</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><jtitle>电子学报:英文版</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ZHAO Chun’e MA Wenping YAN Tongjiang SUN Yuhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear Complexity of Least Significant Bit of Polynomial Quotients</atitle><jtitle>电子学报:英文版</jtitle><addtitle>Chinese Journal of Electronics</addtitle><date>2017</date><risdate>2017</risdate><issue>3</issue><spage>573</spage><epage>578</epage><pages>573-578</pages><issn>1022-4653</issn><abstract>Binary sequences with large linear complexity have been found many applications in communication systems.We determine the linear complexity of a family of p~2-periodic binary sequences derived from polynomial quotients modulo an odd prime p.Results show that these sequences have high linear complexity,which means they can resist the linear attack method.</abstract></addata></record>
fulltext fulltext
identifier ISSN: 1022-4653
ispartof 电子学报:英文版, 2017 (3), p.573-578
issn 1022-4653
language eng
recordid cdi_chongqing_primary_69689088504849554851484956
source EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
title Linear Complexity of Least Significant Bit of Polynomial Quotients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T11%3A47%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-chongqing&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20Complexity%20of%20Least%20Significant%20Bit%20of%20Polynomial%20Quotients&rft.jtitle=%E7%94%B5%E5%AD%90%E5%AD%A6%E6%8A%A5%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=ZHAO%20Chun%E2%80%99e%20MA%20Wenping%20YAN%20Tongjiang%20SUN%20Yuhua&rft.date=2017&rft.issue=3&rft.spage=573&rft.epage=578&rft.pages=573-578&rft.issn=1022-4653&rft_id=info:doi/&rft_dat=%3Cchongqing%3E69689088504849554851484956%3C/chongqing%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=69689088504849554851484956&rfr_iscdi=true