Adaptive Synchronization of Fractional Order Complex-Variable Dynamical Networks via Pinning Control

In this paper, the synchronization of fractional order complex-variable dynamical networks is studied using an adaptive pinning control strategy based on close center degree. Some effective criteria for global synchronization of fractional order complex-variable dynamical networks are derived based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:理论物理通讯:英文版 2017, Vol.67 (9), p.366-374
1. Verfasser: 丁大为 闰洁 王年 梁栋
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 374
container_issue 9
container_start_page 366
container_title 理论物理通讯:英文版
container_volume 67
creator 丁大为 闰洁 王年 梁栋
description In this paper, the synchronization of fractional order complex-variable dynamical networks is studied using an adaptive pinning control strategy based on close center degree. Some effective criteria for global synchronization of fractional order complex-variable dynamical networks are derived based on the Lyapunov stability theory. From the theoretical analysis, one concludes that under appropriate conditions, the complex-variable dynamical networks can realize the global synchronization by using the proper adaptive pinning control method. Meanwhile, we succeed in solving the problem about how much coupling strength should be applied to ensure the synchronization of the fraetionla order complex networks. Therefore, compared with the existing results, the synchronization method in this paper is more general and convenient. This result extends the synchronization condition of the real-variable dynamical networks to the complex-valued field, which makes our research more praetical. Finally, two simulation examples show that the derived theoretical results are valid and the proposed adaptive pinning method is effective.
format Article
fullrecord <record><control><sourceid>chongqing</sourceid><recordid>TN_cdi_chongqing_primary_673392333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>673392333</cqvip_id><sourcerecordid>673392333</sourcerecordid><originalsourceid>FETCH-chongqing_primary_6733923333</originalsourceid><addsrcrecordid>eNqNys0KgkAUhuFZFPR7D0N7YXLIaBmVtKqgaCsnnfTUeMaOYtnVZ9AF9G3eb_F0RF_5M-0FU-X3xKAsb0opfx5M-yJZJlBUWBt5bCjO2BG-oUJH0l1lyBB_P1i558SwXLm8sOblnYERLtbIdUOQY9yCnameju-lrBHkAYmQ0tZTxc6ORPcKtjTjX4diEm5Oq60XZ47SRyujgjEHbqJgrvXC1-3-Qh9JI0V0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Adaptive Synchronization of Fractional Order Complex-Variable Dynamical Networks via Pinning Control</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><source>Alma/SFX Local Collection</source><creator>丁大为 闰洁 王年 梁栋</creator><creatorcontrib>丁大为 闰洁 王年 梁栋</creatorcontrib><description>In this paper, the synchronization of fractional order complex-variable dynamical networks is studied using an adaptive pinning control strategy based on close center degree. Some effective criteria for global synchronization of fractional order complex-variable dynamical networks are derived based on the Lyapunov stability theory. From the theoretical analysis, one concludes that under appropriate conditions, the complex-variable dynamical networks can realize the global synchronization by using the proper adaptive pinning control method. Meanwhile, we succeed in solving the problem about how much coupling strength should be applied to ensure the synchronization of the fraetionla order complex networks. Therefore, compared with the existing results, the synchronization method in this paper is more general and convenient. This result extends the synchronization condition of the real-variable dynamical networks to the complex-valued field, which makes our research more praetical. Finally, two simulation examples show that the derived theoretical results are valid and the proposed adaptive pinning method is effective.</description><identifier>ISSN: 0253-6102</identifier><language>eng</language><subject>分数阶 ; 动态网络 ; 同步问题 ; 复变量 ; 复杂网络 ; 李雅普诺夫稳定性理论 ; 自适应同步 ; 钉扎控制</subject><ispartof>理论物理通讯:英文版, 2017, Vol.67 (9), p.366-374</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/83837X/83837X.jpg</thumbnail><link.rule.ids>314,780,784,4022</link.rule.ids></links><search><creatorcontrib>丁大为 闰洁 王年 梁栋</creatorcontrib><title>Adaptive Synchronization of Fractional Order Complex-Variable Dynamical Networks via Pinning Control</title><title>理论物理通讯:英文版</title><addtitle>Communications in Theoretical Physics</addtitle><description>In this paper, the synchronization of fractional order complex-variable dynamical networks is studied using an adaptive pinning control strategy based on close center degree. Some effective criteria for global synchronization of fractional order complex-variable dynamical networks are derived based on the Lyapunov stability theory. From the theoretical analysis, one concludes that under appropriate conditions, the complex-variable dynamical networks can realize the global synchronization by using the proper adaptive pinning control method. Meanwhile, we succeed in solving the problem about how much coupling strength should be applied to ensure the synchronization of the fraetionla order complex networks. Therefore, compared with the existing results, the synchronization method in this paper is more general and convenient. This result extends the synchronization condition of the real-variable dynamical networks to the complex-valued field, which makes our research more praetical. Finally, two simulation examples show that the derived theoretical results are valid and the proposed adaptive pinning method is effective.</description><subject>分数阶</subject><subject>动态网络</subject><subject>同步问题</subject><subject>复变量</subject><subject>复杂网络</subject><subject>李雅普诺夫稳定性理论</subject><subject>自适应同步</subject><subject>钉扎控制</subject><issn>0253-6102</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNys0KgkAUhuFZFPR7D0N7YXLIaBmVtKqgaCsnnfTUeMaOYtnVZ9AF9G3eb_F0RF_5M-0FU-X3xKAsb0opfx5M-yJZJlBUWBt5bCjO2BG-oUJH0l1lyBB_P1i558SwXLm8sOblnYERLtbIdUOQY9yCnameju-lrBHkAYmQ0tZTxc6ORPcKtjTjX4diEm5Oq60XZ47SRyujgjEHbqJgrvXC1-3-Qh9JI0V0</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>丁大为 闰洁 王年 梁栋</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope></search><sort><creationdate>2017</creationdate><title>Adaptive Synchronization of Fractional Order Complex-Variable Dynamical Networks via Pinning Control</title><author>丁大为 闰洁 王年 梁栋</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-chongqing_primary_6733923333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>分数阶</topic><topic>动态网络</topic><topic>同步问题</topic><topic>复变量</topic><topic>复杂网络</topic><topic>李雅普诺夫稳定性理论</topic><topic>自适应同步</topic><topic>钉扎控制</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>丁大为 闰洁 王年 梁栋</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><jtitle>理论物理通讯:英文版</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>丁大为 闰洁 王年 梁栋</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Synchronization of Fractional Order Complex-Variable Dynamical Networks via Pinning Control</atitle><jtitle>理论物理通讯:英文版</jtitle><addtitle>Communications in Theoretical Physics</addtitle><date>2017</date><risdate>2017</risdate><volume>67</volume><issue>9</issue><spage>366</spage><epage>374</epage><pages>366-374</pages><issn>0253-6102</issn><abstract>In this paper, the synchronization of fractional order complex-variable dynamical networks is studied using an adaptive pinning control strategy based on close center degree. Some effective criteria for global synchronization of fractional order complex-variable dynamical networks are derived based on the Lyapunov stability theory. From the theoretical analysis, one concludes that under appropriate conditions, the complex-variable dynamical networks can realize the global synchronization by using the proper adaptive pinning control method. Meanwhile, we succeed in solving the problem about how much coupling strength should be applied to ensure the synchronization of the fraetionla order complex networks. Therefore, compared with the existing results, the synchronization method in this paper is more general and convenient. This result extends the synchronization condition of the real-variable dynamical networks to the complex-valued field, which makes our research more praetical. Finally, two simulation examples show that the derived theoretical results are valid and the proposed adaptive pinning method is effective.</abstract></addata></record>
fulltext fulltext
identifier ISSN: 0253-6102
ispartof 理论物理通讯:英文版, 2017, Vol.67 (9), p.366-374
issn 0253-6102
language eng
recordid cdi_chongqing_primary_673392333
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link; Alma/SFX Local Collection
subjects 分数阶
动态网络
同步问题
复变量
复杂网络
李雅普诺夫稳定性理论
自适应同步
钉扎控制
title Adaptive Synchronization of Fractional Order Complex-Variable Dynamical Networks via Pinning Control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T11%3A32%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-chongqing&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Synchronization%20of%20Fractional%20Order%20Complex-Variable%20Dynamical%20Networks%20via%20Pinning%20Control&rft.jtitle=%E7%90%86%E8%AE%BA%E7%89%A9%E7%90%86%E9%80%9A%E8%AE%AF%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E4%B8%81%E5%A4%A7%E4%B8%BA%20%E9%97%B0%E6%B4%81%20%E7%8E%8B%E5%B9%B4%20%E6%A2%81%E6%A0%8B&rft.date=2017&rft.volume=67&rft.issue=9&rft.spage=366&rft.epage=374&rft.pages=366-374&rft.issn=0253-6102&rft_id=info:doi/&rft_dat=%3Cchongqing%3E673392333%3C/chongqing%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=673392333&rfr_iscdi=true