N-Soliton Solution and Soliton Resonances for the (2+1)-Dimensional Inhomogeneous Gardner Equation

We derive the Lax pair and Darboux transformation for the (2+1)-dimensional inhomogeneous Gardner equation via the two-singular manifold method from Painleve analysis. N-soliton solution in a compact determinant representation of Grammian type is presented. As an application, dynamic properties of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:理论物理通讯:英文版 2017, Vol.67 (8), p.155-164
1. Verfasser: 王鑫 耿献国
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 164
container_issue 8
container_start_page 155
container_title 理论物理通讯:英文版
container_volume 67
creator 王鑫 耿献国
description We derive the Lax pair and Darboux transformation for the (2+1)-dimensional inhomogeneous Gardner equation via the two-singular manifold method from Painleve analysis. N-soliton solution in a compact determinant representation of Grammian type is presented. As an application, dynamic properties of the bright and dark soliton solutions under periodic and parabolic oscillations up to second order are shown. Resonant behaviors of two bright and two dark solitons are studied, and asymptotic analysis of the corresponding resonant bright and dark two-soliton solutions are performed, respectively.
format Article
fullrecord <record><control><sourceid>chongqing</sourceid><recordid>TN_cdi_chongqing_primary_673003250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>673003250</cqvip_id><sourcerecordid>673003250</sourcerecordid><originalsourceid>FETCH-chongqing_primary_6730032503</originalsourceid><addsrcrecordid>eNqNjEsOgjAURTvQRPzsoXFO8mgDLEDxM3Ggzk0DhdbAq7QwcAcat8Se2IKY6NzRubk5946IByzkfhQAm5Cpc1cAYHEUeEQd_JMpdWOQDmwbPQSBGf2VR-kMCkylo7mxtFGS9t2D9d0r6Lunv9aVRDeMREn3qExlConStI5uhc1QWprUrfi8zsk4F6WTiy9nZLlJzqudnyqDRa2xuNysroS9X6KYA3AWAv9LegPMokl5</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>N-Soliton Solution and Soliton Resonances for the (2+1)-Dimensional Inhomogeneous Gardner Equation</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><source>Alma/SFX Local Collection</source><creator>王鑫 耿献国</creator><creatorcontrib>王鑫 耿献国</creatorcontrib><description>We derive the Lax pair and Darboux transformation for the (2+1)-dimensional inhomogeneous Gardner equation via the two-singular manifold method from Painleve analysis. N-soliton solution in a compact determinant representation of Grammian type is presented. As an application, dynamic properties of the bright and dark soliton solutions under periodic and parabolic oscillations up to second order are shown. Resonant behaviors of two bright and two dark solitons are studied, and asymptotic analysis of the corresponding resonant bright and dark two-soliton solutions are performed, respectively.</description><identifier>ISSN: 0253-6102</identifier><language>eng</language><subject>Darboux变换 ; Painleve分析 ; 共振 ; 周期振荡 ; 孤子解 ; 方程 ; 行列式表示 ; 非齐次</subject><ispartof>理论物理通讯:英文版, 2017, Vol.67 (8), p.155-164</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/83837X/83837X.jpg</thumbnail><link.rule.ids>314,776,780,4010</link.rule.ids></links><search><creatorcontrib>王鑫 耿献国</creatorcontrib><title>N-Soliton Solution and Soliton Resonances for the (2+1)-Dimensional Inhomogeneous Gardner Equation</title><title>理论物理通讯:英文版</title><addtitle>Communications in Theoretical Physics</addtitle><description>We derive the Lax pair and Darboux transformation for the (2+1)-dimensional inhomogeneous Gardner equation via the two-singular manifold method from Painleve analysis. N-soliton solution in a compact determinant representation of Grammian type is presented. As an application, dynamic properties of the bright and dark soliton solutions under periodic and parabolic oscillations up to second order are shown. Resonant behaviors of two bright and two dark solitons are studied, and asymptotic analysis of the corresponding resonant bright and dark two-soliton solutions are performed, respectively.</description><subject>Darboux变换</subject><subject>Painleve分析</subject><subject>共振</subject><subject>周期振荡</subject><subject>孤子解</subject><subject>方程</subject><subject>行列式表示</subject><subject>非齐次</subject><issn>0253-6102</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNjEsOgjAURTvQRPzsoXFO8mgDLEDxM3Ggzk0DhdbAq7QwcAcat8Se2IKY6NzRubk5946IByzkfhQAm5Cpc1cAYHEUeEQd_JMpdWOQDmwbPQSBGf2VR-kMCkylo7mxtFGS9t2D9d0r6Lunv9aVRDeMREn3qExlConStI5uhc1QWprUrfi8zsk4F6WTiy9nZLlJzqudnyqDRa2xuNysroS9X6KYA3AWAv9LegPMokl5</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>王鑫 耿献国</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope></search><sort><creationdate>2017</creationdate><title>N-Soliton Solution and Soliton Resonances for the (2+1)-Dimensional Inhomogeneous Gardner Equation</title><author>王鑫 耿献国</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-chongqing_primary_6730032503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Darboux变换</topic><topic>Painleve分析</topic><topic>共振</topic><topic>周期振荡</topic><topic>孤子解</topic><topic>方程</topic><topic>行列式表示</topic><topic>非齐次</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>王鑫 耿献国</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><jtitle>理论物理通讯:英文版</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>王鑫 耿献国</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>N-Soliton Solution and Soliton Resonances for the (2+1)-Dimensional Inhomogeneous Gardner Equation</atitle><jtitle>理论物理通讯:英文版</jtitle><addtitle>Communications in Theoretical Physics</addtitle><date>2017</date><risdate>2017</risdate><volume>67</volume><issue>8</issue><spage>155</spage><epage>164</epage><pages>155-164</pages><issn>0253-6102</issn><abstract>We derive the Lax pair and Darboux transformation for the (2+1)-dimensional inhomogeneous Gardner equation via the two-singular manifold method from Painleve analysis. N-soliton solution in a compact determinant representation of Grammian type is presented. As an application, dynamic properties of the bright and dark soliton solutions under periodic and parabolic oscillations up to second order are shown. Resonant behaviors of two bright and two dark solitons are studied, and asymptotic analysis of the corresponding resonant bright and dark two-soliton solutions are performed, respectively.</abstract></addata></record>
fulltext fulltext
identifier ISSN: 0253-6102
ispartof 理论物理通讯:英文版, 2017, Vol.67 (8), p.155-164
issn 0253-6102
language eng
recordid cdi_chongqing_primary_673003250
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link; Alma/SFX Local Collection
subjects Darboux变换
Painleve分析
共振
周期振荡
孤子解
方程
行列式表示
非齐次
title N-Soliton Solution and Soliton Resonances for the (2+1)-Dimensional Inhomogeneous Gardner Equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A54%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-chongqing&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=N-Soliton%20Solution%20and%20Soliton%20Resonances%20for%20the%20%EF%BC%882%EF%BC%8B1%EF%BC%89-Dimensional%20Inhomogeneous%20Gardner%20Equation&rft.jtitle=%E7%90%86%E8%AE%BA%E7%89%A9%E7%90%86%E9%80%9A%E8%AE%AF%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E7%8E%8B%E9%91%AB%20%E8%80%BF%E7%8C%AE%E5%9B%BD&rft.date=2017&rft.volume=67&rft.issue=8&rft.spage=155&rft.epage=164&rft.pages=155-164&rft.issn=0253-6102&rft_id=info:doi/&rft_dat=%3Cchongqing%3E673003250%3C/chongqing%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=673003250&rfr_iscdi=true