N-Soliton Solution and Soliton Resonances for the (2+1)-Dimensional Inhomogeneous Gardner Equation
We derive the Lax pair and Darboux transformation for the (2+1)-dimensional inhomogeneous Gardner equation via the two-singular manifold method from Painleve analysis. N-soliton solution in a compact determinant representation of Grammian type is presented. As an application, dynamic properties of t...
Gespeichert in:
Veröffentlicht in: | 理论物理通讯:英文版 2017, Vol.67 (8), p.155-164 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 164 |
---|---|
container_issue | 8 |
container_start_page | 155 |
container_title | 理论物理通讯:英文版 |
container_volume | 67 |
creator | 王鑫 耿献国 |
description | We derive the Lax pair and Darboux transformation for the (2+1)-dimensional inhomogeneous Gardner equation via the two-singular manifold method from Painleve analysis. N-soliton solution in a compact determinant representation of Grammian type is presented. As an application, dynamic properties of the bright and dark soliton solutions under periodic and parabolic oscillations up to second order are shown. Resonant behaviors of two bright and two dark solitons are studied, and asymptotic analysis of the corresponding resonant bright and dark two-soliton solutions are performed, respectively. |
format | Article |
fullrecord | <record><control><sourceid>chongqing</sourceid><recordid>TN_cdi_chongqing_primary_673003250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>673003250</cqvip_id><sourcerecordid>673003250</sourcerecordid><originalsourceid>FETCH-chongqing_primary_6730032503</originalsourceid><addsrcrecordid>eNqNjEsOgjAURTvQRPzsoXFO8mgDLEDxM3Ggzk0DhdbAq7QwcAcat8Se2IKY6NzRubk5946IByzkfhQAm5Cpc1cAYHEUeEQd_JMpdWOQDmwbPQSBGf2VR-kMCkylo7mxtFGS9t2D9d0r6Lunv9aVRDeMREn3qExlConStI5uhc1QWprUrfi8zsk4F6WTiy9nZLlJzqudnyqDRa2xuNysroS9X6KYA3AWAv9LegPMokl5</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>N-Soliton Solution and Soliton Resonances for the (2+1)-Dimensional Inhomogeneous Gardner Equation</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><source>Alma/SFX Local Collection</source><creator>王鑫 耿献国</creator><creatorcontrib>王鑫 耿献国</creatorcontrib><description>We derive the Lax pair and Darboux transformation for the (2+1)-dimensional inhomogeneous Gardner equation via the two-singular manifold method from Painleve analysis. N-soliton solution in a compact determinant representation of Grammian type is presented. As an application, dynamic properties of the bright and dark soliton solutions under periodic and parabolic oscillations up to second order are shown. Resonant behaviors of two bright and two dark solitons are studied, and asymptotic analysis of the corresponding resonant bright and dark two-soliton solutions are performed, respectively.</description><identifier>ISSN: 0253-6102</identifier><language>eng</language><subject>Darboux变换 ; Painleve分析 ; 共振 ; 周期振荡 ; 孤子解 ; 方程 ; 行列式表示 ; 非齐次</subject><ispartof>理论物理通讯:英文版, 2017, Vol.67 (8), p.155-164</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/83837X/83837X.jpg</thumbnail><link.rule.ids>314,776,780,4010</link.rule.ids></links><search><creatorcontrib>王鑫 耿献国</creatorcontrib><title>N-Soliton Solution and Soliton Resonances for the (2+1)-Dimensional Inhomogeneous Gardner Equation</title><title>理论物理通讯:英文版</title><addtitle>Communications in Theoretical Physics</addtitle><description>We derive the Lax pair and Darboux transformation for the (2+1)-dimensional inhomogeneous Gardner equation via the two-singular manifold method from Painleve analysis. N-soliton solution in a compact determinant representation of Grammian type is presented. As an application, dynamic properties of the bright and dark soliton solutions under periodic and parabolic oscillations up to second order are shown. Resonant behaviors of two bright and two dark solitons are studied, and asymptotic analysis of the corresponding resonant bright and dark two-soliton solutions are performed, respectively.</description><subject>Darboux变换</subject><subject>Painleve分析</subject><subject>共振</subject><subject>周期振荡</subject><subject>孤子解</subject><subject>方程</subject><subject>行列式表示</subject><subject>非齐次</subject><issn>0253-6102</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNjEsOgjAURTvQRPzsoXFO8mgDLEDxM3Ggzk0DhdbAq7QwcAcat8Se2IKY6NzRubk5946IByzkfhQAm5Cpc1cAYHEUeEQd_JMpdWOQDmwbPQSBGf2VR-kMCkylo7mxtFGS9t2D9d0r6Lunv9aVRDeMREn3qExlConStI5uhc1QWprUrfi8zsk4F6WTiy9nZLlJzqudnyqDRa2xuNysroS9X6KYA3AWAv9LegPMokl5</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>王鑫 耿献国</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope></search><sort><creationdate>2017</creationdate><title>N-Soliton Solution and Soliton Resonances for the (2+1)-Dimensional Inhomogeneous Gardner Equation</title><author>王鑫 耿献国</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-chongqing_primary_6730032503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Darboux变换</topic><topic>Painleve分析</topic><topic>共振</topic><topic>周期振荡</topic><topic>孤子解</topic><topic>方程</topic><topic>行列式表示</topic><topic>非齐次</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>王鑫 耿献国</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><jtitle>理论物理通讯:英文版</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>王鑫 耿献国</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>N-Soliton Solution and Soliton Resonances for the (2+1)-Dimensional Inhomogeneous Gardner Equation</atitle><jtitle>理论物理通讯:英文版</jtitle><addtitle>Communications in Theoretical Physics</addtitle><date>2017</date><risdate>2017</risdate><volume>67</volume><issue>8</issue><spage>155</spage><epage>164</epage><pages>155-164</pages><issn>0253-6102</issn><abstract>We derive the Lax pair and Darboux transformation for the (2+1)-dimensional inhomogeneous Gardner equation via the two-singular manifold method from Painleve analysis. N-soliton solution in a compact determinant representation of Grammian type is presented. As an application, dynamic properties of the bright and dark soliton solutions under periodic and parabolic oscillations up to second order are shown. Resonant behaviors of two bright and two dark solitons are studied, and asymptotic analysis of the corresponding resonant bright and dark two-soliton solutions are performed, respectively.</abstract></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0253-6102 |
ispartof | 理论物理通讯:英文版, 2017, Vol.67 (8), p.155-164 |
issn | 0253-6102 |
language | eng |
recordid | cdi_chongqing_primary_673003250 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link; Alma/SFX Local Collection |
subjects | Darboux变换 Painleve分析 共振 周期振荡 孤子解 方程 行列式表示 非齐次 |
title | N-Soliton Solution and Soliton Resonances for the (2+1)-Dimensional Inhomogeneous Gardner Equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A54%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-chongqing&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=N-Soliton%20Solution%20and%20Soliton%20Resonances%20for%20the%20%EF%BC%882%EF%BC%8B1%EF%BC%89-Dimensional%20Inhomogeneous%20Gardner%20Equation&rft.jtitle=%E7%90%86%E8%AE%BA%E7%89%A9%E7%90%86%E9%80%9A%E8%AE%AF%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E7%8E%8B%E9%91%AB%20%E8%80%BF%E7%8C%AE%E5%9B%BD&rft.date=2017&rft.volume=67&rft.issue=8&rft.spage=155&rft.epage=164&rft.pages=155-164&rft.issn=0253-6102&rft_id=info:doi/&rft_dat=%3Cchongqing%3E673003250%3C/chongqing%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=673003250&rfr_iscdi=true |