Anomaly Detection Algorithm for Stay Cable MonitoringData Based on Data Fusion
In order to improve the accuracy and consistency of data in health monitoring system, an anomalydetection algorithm for stay cables based on data fusion is proposed. The monitoring data of Nanjing No.3Yangtze River Bridge is used as the basis of study. Firstly, an adaptive processing framework with...
Gespeichert in:
Veröffentlicht in: | 哈尔滨工业大学学报:英文版 2016, Vol.23 (3), p.39-43 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 43 |
---|---|
container_issue | 3 |
container_start_page | 39 |
container_title | 哈尔滨工业大学学报:英文版 |
container_volume | 23 |
creator | Xiaoling Liu Qiao Huang Yuan Ren |
description | In order to improve the accuracy and consistency of data in health monitoring system, an anomalydetection algorithm for stay cables based on data fusion is proposed. The monitoring data of Nanjing No.3Yangtze River Bridge is used as the basis of study. Firstly, an adaptive processing framework with feedbackcontrol is established based on the concept of data fusion. The data processing contains four steps : dataspecification, data cleaning, data conversion and data fusion. Data processing information offers feedback to theoriginal data system, which further gives guidance for the sensor maintenance or replacement. Subsequently, thealgorithm steps based on the continuous data distortion is investigated,which integrates the inspection data andthe distribution test method. Finally, a group of cable force data is utilized as an example to verify theestablished framework and algorithm. Experimental results show that the proposed algorithm can achieve highdetection accuracy, providing a valuable reference for other monitoring data processing. |
format | Article |
fullrecord | <record><control><sourceid>chongqing</sourceid><recordid>TN_cdi_chongqing_primary_668815847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>668815847</cqvip_id><sourcerecordid>668815847</sourcerecordid><originalsourceid>FETCH-chongqing_primary_6688158473</originalsourceid><addsrcrecordid>eNpjYeA0NDAw1bU0NDTmYOAqLs4yMDC2tDQw42Twc8zLz03MqVRwSS1JTS7JzM9TcMxJzy_KLMnIVUjLL1IILkmsVHBOTMpJVfDNz8ssAUrlpbskliQqOCUWp6YoADWAeW6lxUDNPAysaYk5xam8UJqbQcnNNcTZQzc5Iz8vvRCoNb6gKDM3sagy3szMwsLQ1MLE3JgoRQCPBjxE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Anomaly Detection Algorithm for Stay Cable MonitoringData Based on Data Fusion</title><source>Alma/SFX Local Collection</source><creator>Xiaoling Liu Qiao Huang Yuan Ren</creator><creatorcontrib>Xiaoling Liu Qiao Huang Yuan Ren</creatorcontrib><description>In order to improve the accuracy and consistency of data in health monitoring system, an anomalydetection algorithm for stay cables based on data fusion is proposed. The monitoring data of Nanjing No.3Yangtze River Bridge is used as the basis of study. Firstly, an adaptive processing framework with feedbackcontrol is established based on the concept of data fusion. The data processing contains four steps : dataspecification, data cleaning, data conversion and data fusion. Data processing information offers feedback to theoriginal data system, which further gives guidance for the sensor maintenance or replacement. Subsequently, thealgorithm steps based on the continuous data distortion is investigated,which integrates the inspection data andthe distribution test method. Finally, a group of cable force data is utilized as an example to verify theestablished framework and algorithm. Experimental results show that the proposed algorithm can achieve highdetection accuracy, providing a valuable reference for other monitoring data processing.</description><identifier>ISSN: 1005-9113</identifier><language>eng</language><subject>anomaly ; cable ; data ; detection ; fusion ; health ; inspection ; manual ; monitoring ; stay</subject><ispartof>哈尔滨工业大学学报:英文版, 2016, Vol.23 (3), p.39-43</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86045X/86045X.jpg</thumbnail><link.rule.ids>314,776,780,4010</link.rule.ids></links><search><creatorcontrib>Xiaoling Liu Qiao Huang Yuan Ren</creatorcontrib><title>Anomaly Detection Algorithm for Stay Cable MonitoringData Based on Data Fusion</title><title>哈尔滨工业大学学报:英文版</title><addtitle>Journal of Harbin Institute of Technology</addtitle><description>In order to improve the accuracy and consistency of data in health monitoring system, an anomalydetection algorithm for stay cables based on data fusion is proposed. The monitoring data of Nanjing No.3Yangtze River Bridge is used as the basis of study. Firstly, an adaptive processing framework with feedbackcontrol is established based on the concept of data fusion. The data processing contains four steps : dataspecification, data cleaning, data conversion and data fusion. Data processing information offers feedback to theoriginal data system, which further gives guidance for the sensor maintenance or replacement. Subsequently, thealgorithm steps based on the continuous data distortion is investigated,which integrates the inspection data andthe distribution test method. Finally, a group of cable force data is utilized as an example to verify theestablished framework and algorithm. Experimental results show that the proposed algorithm can achieve highdetection accuracy, providing a valuable reference for other monitoring data processing.</description><subject>anomaly</subject><subject>cable</subject><subject>data</subject><subject>detection</subject><subject>fusion</subject><subject>health</subject><subject>inspection</subject><subject>manual</subject><subject>monitoring</subject><subject>stay</subject><issn>1005-9113</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpjYeA0NDAw1bU0NDTmYOAqLs4yMDC2tDQw42Twc8zLz03MqVRwSS1JTS7JzM9TcMxJzy_KLMnIVUjLL1IILkmsVHBOTMpJVfDNz8ssAUrlpbskliQqOCUWp6YoADWAeW6lxUDNPAysaYk5xam8UJqbQcnNNcTZQzc5Iz8vvRCoNb6gKDM3sagy3szMwsLQ1MLE3JgoRQCPBjxE</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Xiaoling Liu Qiao Huang Yuan Ren</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope></search><sort><creationdate>2016</creationdate><title>Anomaly Detection Algorithm for Stay Cable MonitoringData Based on Data Fusion</title><author>Xiaoling Liu Qiao Huang Yuan Ren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-chongqing_primary_6688158473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>anomaly</topic><topic>cable</topic><topic>data</topic><topic>detection</topic><topic>fusion</topic><topic>health</topic><topic>inspection</topic><topic>manual</topic><topic>monitoring</topic><topic>stay</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiaoling Liu Qiao Huang Yuan Ren</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><jtitle>哈尔滨工业大学学报:英文版</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiaoling Liu Qiao Huang Yuan Ren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anomaly Detection Algorithm for Stay Cable MonitoringData Based on Data Fusion</atitle><jtitle>哈尔滨工业大学学报:英文版</jtitle><addtitle>Journal of Harbin Institute of Technology</addtitle><date>2016</date><risdate>2016</risdate><volume>23</volume><issue>3</issue><spage>39</spage><epage>43</epage><pages>39-43</pages><issn>1005-9113</issn><abstract>In order to improve the accuracy and consistency of data in health monitoring system, an anomalydetection algorithm for stay cables based on data fusion is proposed. The monitoring data of Nanjing No.3Yangtze River Bridge is used as the basis of study. Firstly, an adaptive processing framework with feedbackcontrol is established based on the concept of data fusion. The data processing contains four steps : dataspecification, data cleaning, data conversion and data fusion. Data processing information offers feedback to theoriginal data system, which further gives guidance for the sensor maintenance or replacement. Subsequently, thealgorithm steps based on the continuous data distortion is investigated,which integrates the inspection data andthe distribution test method. Finally, a group of cable force data is utilized as an example to verify theestablished framework and algorithm. Experimental results show that the proposed algorithm can achieve highdetection accuracy, providing a valuable reference for other monitoring data processing.</abstract></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1005-9113 |
ispartof | 哈尔滨工业大学学报:英文版, 2016, Vol.23 (3), p.39-43 |
issn | 1005-9113 |
language | eng |
recordid | cdi_chongqing_primary_668815847 |
source | Alma/SFX Local Collection |
subjects | anomaly cable data detection fusion health inspection manual monitoring stay |
title | Anomaly Detection Algorithm for Stay Cable MonitoringData Based on Data Fusion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T13%3A38%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-chongqing&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anomaly%20Detection%20Algorithm%20for%20Stay%20Cable%20MonitoringData%20Based%20on%20Data%20Fusion&rft.jtitle=%E5%93%88%E5%B0%94%E6%BB%A8%E5%B7%A5%E4%B8%9A%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=Xiaoling%20Liu%20Qiao%20Huang%20Yuan%20Ren&rft.date=2016&rft.volume=23&rft.issue=3&rft.spage=39&rft.epage=43&rft.pages=39-43&rft.issn=1005-9113&rft_id=info:doi/&rft_dat=%3Cchongqing%3E668815847%3C/chongqing%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=668815847&rfr_iscdi=true |