Sub-100 nm hollow SnO_2@C nanoparticles as anode material for lithium ion batteries and significantly enhanced cycle performances
Rational designing and controlling of nanostructures is a key factor in realizing appropriate properties required for the high-performance energy fields. In the present study, hollow Sn O2@C nanoparticles(NPs) with a mean size of 50 nm have been synthesized in large-scale via a facile hydrothermal a...
Gespeichert in:
Veröffentlicht in: | 中国化学快报:英文版 2015 (10), p.1293-1297 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1297 |
---|---|
container_issue | 10 |
container_start_page | 1293 |
container_title | 中国化学快报:英文版 |
container_volume | |
creator | Shuang-Lei Yang Bang-Hong Zhou Mei Lei Lan-Ping Huang Jun Pan Wei Wu Hong-Bo Zhang |
description | Rational designing and controlling of nanostructures is a key factor in realizing appropriate properties required for the high-performance energy fields. In the present study, hollow Sn O2@C nanoparticles(NPs) with a mean size of 50 nm have been synthesized in large-scale via a facile hydrothermal approach.The morphology and composition of as-obtained products were studied by various characterized techniques. As an anode material for lithium ion batteries(LIBs), the as-prepared hollow Sn O2@C NPs exhibit significant improvement in cycle performances. The discharge capacity of lithium battery is as high as 370 m Ah g 1, and the current density is 3910 m A g 1(5 C) after 573 cycles. Furthermore, the capacity recovers up to 1100 m Ah g 1at the rate performances in which the current density is recovered to 156.4 m A g 1(0.2 C). Undoubtedly, sub-100 nm Sn O2@C NPs provide significant improvement to the electrochemical performance of LIBs as superior-anode nanomaterials, and this carbon coating strategy can pave the way for developing high-performance LIBs. |
format | Article |
fullrecord | <record><control><sourceid>chongqing</sourceid><recordid>TN_cdi_chongqing_primary_666396239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>666396239</cqvip_id><sourcerecordid>666396239</sourcerecordid><originalsourceid>FETCH-chongqing_primary_6663962393</originalsourceid><addsrcrecordid>eNqNTMtKxDAUDeKA4-g_XNwX-hgz6U4YFHcuxn25k6btHZKbmmSQLv1zU_ADhAPncF43YlupgyqeW7m_zbosq0Ltq8OduI_xUpa1Uo3cip_T9VzkENjB5K3133Dij65-OQIj-xlDIm1NBMxg3xtwmEwgtDD4AJbSRFcH5BnOmNZk7XIPkUamgTRysgsYnpC16UEv-Q1mE_LarVZ8EJsBbTSPf7wTT2-vn8f3Qk-exy_isZsDOQxLJ6VsWlk3bfOv0i9ytFFS</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sub-100 nm hollow SnO_2@C nanoparticles as anode material for lithium ion batteries and significantly enhanced cycle performances</title><source>Elsevier ScienceDirect Journals</source><source>Alma/SFX Local Collection</source><creator>Shuang-Lei Yang Bang-Hong Zhou Mei Lei Lan-Ping Huang Jun Pan Wei Wu Hong-Bo Zhang</creator><creatorcontrib>Shuang-Lei Yang Bang-Hong Zhou Mei Lei Lan-Ping Huang Jun Pan Wei Wu Hong-Bo Zhang</creatorcontrib><description>Rational designing and controlling of nanostructures is a key factor in realizing appropriate properties required for the high-performance energy fields. In the present study, hollow Sn O2@C nanoparticles(NPs) with a mean size of 50 nm have been synthesized in large-scale via a facile hydrothermal approach.The morphology and composition of as-obtained products were studied by various characterized techniques. As an anode material for lithium ion batteries(LIBs), the as-prepared hollow Sn O2@C NPs exhibit significant improvement in cycle performances. The discharge capacity of lithium battery is as high as 370 m Ah g 1, and the current density is 3910 m A g 1(5 C) after 573 cycles. Furthermore, the capacity recovers up to 1100 m Ah g 1at the rate performances in which the current density is recovered to 156.4 m A g 1(0.2 C). Undoubtedly, sub-100 nm Sn O2@C NPs provide significant improvement to the electrochemical performance of LIBs as superior-anode nanomaterials, and this carbon coating strategy can pave the way for developing high-performance LIBs.</description><identifier>ISSN: 1001-8417</identifier><identifier>EISSN: 1878-5964</identifier><language>eng</language><subject>循环性能 ; 水热方法 ; 电化学性能 ; 电流密度 ; 碳纳米颗粒 ; 纳米结构 ; 负极材料 ; 锂离子电池</subject><ispartof>中国化学快报:英文版, 2015 (10), p.1293-1297</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/84039X/84039X.jpg</thumbnail><link.rule.ids>314,776,780,4010</link.rule.ids></links><search><creatorcontrib>Shuang-Lei Yang Bang-Hong Zhou Mei Lei Lan-Ping Huang Jun Pan Wei Wu Hong-Bo Zhang</creatorcontrib><title>Sub-100 nm hollow SnO_2@C nanoparticles as anode material for lithium ion batteries and significantly enhanced cycle performances</title><title>中国化学快报:英文版</title><addtitle>Chinese Chemical Letters</addtitle><description>Rational designing and controlling of nanostructures is a key factor in realizing appropriate properties required for the high-performance energy fields. In the present study, hollow Sn O2@C nanoparticles(NPs) with a mean size of 50 nm have been synthesized in large-scale via a facile hydrothermal approach.The morphology and composition of as-obtained products were studied by various characterized techniques. As an anode material for lithium ion batteries(LIBs), the as-prepared hollow Sn O2@C NPs exhibit significant improvement in cycle performances. The discharge capacity of lithium battery is as high as 370 m Ah g 1, and the current density is 3910 m A g 1(5 C) after 573 cycles. Furthermore, the capacity recovers up to 1100 m Ah g 1at the rate performances in which the current density is recovered to 156.4 m A g 1(0.2 C). Undoubtedly, sub-100 nm Sn O2@C NPs provide significant improvement to the electrochemical performance of LIBs as superior-anode nanomaterials, and this carbon coating strategy can pave the way for developing high-performance LIBs.</description><subject>循环性能</subject><subject>水热方法</subject><subject>电化学性能</subject><subject>电流密度</subject><subject>碳纳米颗粒</subject><subject>纳米结构</subject><subject>负极材料</subject><subject>锂离子电池</subject><issn>1001-8417</issn><issn>1878-5964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNTMtKxDAUDeKA4-g_XNwX-hgz6U4YFHcuxn25k6btHZKbmmSQLv1zU_ADhAPncF43YlupgyqeW7m_zbosq0Ltq8OduI_xUpa1Uo3cip_T9VzkENjB5K3133Dij65-OQIj-xlDIm1NBMxg3xtwmEwgtDD4AJbSRFcH5BnOmNZk7XIPkUamgTRysgsYnpC16UEv-Q1mE_LarVZ8EJsBbTSPf7wTT2-vn8f3Qk-exy_isZsDOQxLJ6VsWlk3bfOv0i9ytFFS</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>Shuang-Lei Yang Bang-Hong Zhou Mei Lei Lan-Ping Huang Jun Pan Wei Wu Hong-Bo Zhang</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope></search><sort><creationdate>2015</creationdate><title>Sub-100 nm hollow SnO_2@C nanoparticles as anode material for lithium ion batteries and significantly enhanced cycle performances</title><author>Shuang-Lei Yang Bang-Hong Zhou Mei Lei Lan-Ping Huang Jun Pan Wei Wu Hong-Bo Zhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-chongqing_primary_6663962393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>循环性能</topic><topic>水热方法</topic><topic>电化学性能</topic><topic>电流密度</topic><topic>碳纳米颗粒</topic><topic>纳米结构</topic><topic>负极材料</topic><topic>锂离子电池</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shuang-Lei Yang Bang-Hong Zhou Mei Lei Lan-Ping Huang Jun Pan Wei Wu Hong-Bo Zhang</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库- 镜像站点</collection><jtitle>中国化学快报:英文版</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shuang-Lei Yang Bang-Hong Zhou Mei Lei Lan-Ping Huang Jun Pan Wei Wu Hong-Bo Zhang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sub-100 nm hollow SnO_2@C nanoparticles as anode material for lithium ion batteries and significantly enhanced cycle performances</atitle><jtitle>中国化学快报:英文版</jtitle><addtitle>Chinese Chemical Letters</addtitle><date>2015</date><risdate>2015</risdate><issue>10</issue><spage>1293</spage><epage>1297</epage><pages>1293-1297</pages><issn>1001-8417</issn><eissn>1878-5964</eissn><abstract>Rational designing and controlling of nanostructures is a key factor in realizing appropriate properties required for the high-performance energy fields. In the present study, hollow Sn O2@C nanoparticles(NPs) with a mean size of 50 nm have been synthesized in large-scale via a facile hydrothermal approach.The morphology and composition of as-obtained products were studied by various characterized techniques. As an anode material for lithium ion batteries(LIBs), the as-prepared hollow Sn O2@C NPs exhibit significant improvement in cycle performances. The discharge capacity of lithium battery is as high as 370 m Ah g 1, and the current density is 3910 m A g 1(5 C) after 573 cycles. Furthermore, the capacity recovers up to 1100 m Ah g 1at the rate performances in which the current density is recovered to 156.4 m A g 1(0.2 C). Undoubtedly, sub-100 nm Sn O2@C NPs provide significant improvement to the electrochemical performance of LIBs as superior-anode nanomaterials, and this carbon coating strategy can pave the way for developing high-performance LIBs.</abstract></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1001-8417 |
ispartof | 中国化学快报:英文版, 2015 (10), p.1293-1297 |
issn | 1001-8417 1878-5964 |
language | eng |
recordid | cdi_chongqing_primary_666396239 |
source | Elsevier ScienceDirect Journals; Alma/SFX Local Collection |
subjects | 循环性能 水热方法 电化学性能 电流密度 碳纳米颗粒 纳米结构 负极材料 锂离子电池 |
title | Sub-100 nm hollow SnO_2@C nanoparticles as anode material for lithium ion batteries and significantly enhanced cycle performances |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A18%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-chongqing&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sub-100%20nm%20hollow%20SnO_2@C%20nanoparticles%20as%20anode%20material%20for%20lithium%20ion%20batteries%20and%20significantly%20enhanced%20cycle%20performances&rft.jtitle=%E4%B8%AD%E5%9B%BD%E5%8C%96%E5%AD%A6%E5%BF%AB%E6%8A%A5%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=Shuang-Lei%20Yang%20Bang-Hong%20Zhou%20Mei%20Lei%20Lan-Ping%20Huang%20Jun%20Pan%20Wei%20Wu%20Hong-Bo%20Zhang&rft.date=2015&rft.issue=10&rft.spage=1293&rft.epage=1297&rft.pages=1293-1297&rft.issn=1001-8417&rft.eissn=1878-5964&rft_id=info:doi/&rft_dat=%3Cchongqing%3E666396239%3C/chongqing%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=666396239&rfr_iscdi=true |