基于LSSVM-DACPSO模型的物流需求预测

最小二乘支持向量机(LSSVM)的推广与应用依赖于核函数中参数的选择。文章针对LSSVM在物流需求预测中参数选择的随意性、耗时性等问题,将LSSVM与动态加速系数粒子群优化(DACPSO)算法结合,提出一种基于LSSVM-DACPSO的物流需求预测模型。该模型首先利用DACPSO算法的寻优能力选择LSSVM最优参数,然后运用LSSVM的非线性运算能力对物流需求量进行预测。利用我国的物流数据进行实例分析,结果表明,相比于TVACPSO算法、PSO算法和交叉验证法,DACPSO算法优化的LSSVM具有更高的预测精度和更快的建模速度,该模型具有一定的推广与应用价值。...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:统计与决策 2015 (14), p.78-81
1. Verfasser: 耿立艳 郭斌
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!