Parallelized User Clicks Recognition from Massive HTTP Data Based on Dependency Graph Model
With increasingly complex website structure and continuously advancing web technologies,accurate user clicks recognition from massive HTTP data,which is critical for web usage mining,becomes more difficult.In this paper,we propose a dependency graph model to describe the relationships between web re...
Gespeichert in:
Veröffentlicht in: | China communications 2014-12, Vol.11 (12), p.13-25 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 25 |
---|---|
container_issue | 12 |
container_start_page | 13 |
container_title | China communications |
container_volume | 11 |
creator | Fang, Cheng Liu, Jun Lei, Zhenming |
description | With increasingly complex website structure and continuously advancing web technologies,accurate user clicks recognition from massive HTTP data,which is critical for web usage mining,becomes more difficult.In this paper,we propose a dependency graph model to describe the relationships between web requests.Based on this model,we design and implement a heuristic parallel algorithm to distinguish user clicks with the assistance of cloud computing technology.We evaluate the proposed algorithm with real massive data.The size of the dataset collected from a mobile core network is 228.7GB.It covers more than three million users.The experiment results demonstrate that the proposed algorithm can achieve higher accuracy than previous methods. |
doi_str_mv | 10.1109/CC.2014.7019836 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_chongqing_primary_663363138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>663363138</cqvip_id><ieee_id>7019836</ieee_id><sourcerecordid>10_1109_CC_2014_7019836</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-b8b647af27791011fec672039bae5dd399c5fcfcd1fe2182ac807c8e9eadf8e3</originalsourceid><addsrcrecordid>eNpFkL9PAjEYhjtoIkFmB5fG_aC9Hv0x6qFgApGYc3K4lPYrVI87bIkJ_vWWQPRbvuF93nd4ELqhZEgpUaOyHOaEFkNBqJKMX6Ae5YJl46IQV2gQ4wdJJzlnPO-h96UOummg8T9g8VuEgMvGm8-IX8F069bvfddiF7otXugY_TfgWVUt8UTvNX7QMZVSPoEdtBZac8DToHcbvOgsNNfo0ukmwuD8-6h6eqzKWTZ_mT6X9_PM5FLus5Vc8UJolwuhKKHUgeEiJ0ytNIytZUqZsTPO2JTkVObaSCKMBAXaOgmsj0anWRO6GAO4ehf8VodDTUl9NFKXZX00Up-NpMbtqeEB4I_-T-_Oe5uuXX_5dv2HJGkJoEyyX1W9ajo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Parallelized User Clicks Recognition from Massive HTTP Data Based on Dependency Graph Model</title><source>IEEE Electronic Library (IEL)</source><creator>Fang, Cheng ; Liu, Jun ; Lei, Zhenming</creator><creatorcontrib>Fang, Cheng ; Liu, Jun ; Lei, Zhenming</creatorcontrib><description>With increasingly complex website structure and continuously advancing web technologies,accurate user clicks recognition from massive HTTP data,which is critical for web usage mining,becomes more difficult.In this paper,we propose a dependency graph model to describe the relationships between web requests.Based on this model,we design and implement a heuristic parallel algorithm to distinguish user clicks with the assistance of cloud computing technology.We evaluate the proposed algorithm with real massive data.The size of the dataset collected from a mobile core network is 228.7GB.It covers more than three million users.The experiment results demonstrate that the proposed algorithm can achieve higher accuracy than previous methods.</description><identifier>ISSN: 1673-5447</identifier><identifier>DOI: 10.1109/CC.2014.7019836</identifier><identifier>CODEN: CCHOBE</identifier><language>eng</language><publisher>China Institute of Communications</publisher><subject>Algorithm design and analysis ; Big data ; cloud computing ; Computational modeling ; Data mining ; Data models ; Data preprocessing ; graph model ; HTTP ; Internet ; massive data ; Parallel algorithms ; web usage mining ; Web使用挖掘 ; 图模型 ; 并行算法 ; 用户 ; 移动核心网络 ; 网站结构 ; 网络技术</subject><ispartof>China communications, 2014-12, Vol.11 (12), p.13-25</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-b8b647af27791011fec672039bae5dd399c5fcfcd1fe2182ac807c8e9eadf8e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/89450X/89450X.jpg</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7019836$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7019836$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fang, Cheng</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Lei, Zhenming</creatorcontrib><title>Parallelized User Clicks Recognition from Massive HTTP Data Based on Dependency Graph Model</title><title>China communications</title><addtitle>ChinaComm</addtitle><addtitle>China Communications</addtitle><description>With increasingly complex website structure and continuously advancing web technologies,accurate user clicks recognition from massive HTTP data,which is critical for web usage mining,becomes more difficult.In this paper,we propose a dependency graph model to describe the relationships between web requests.Based on this model,we design and implement a heuristic parallel algorithm to distinguish user clicks with the assistance of cloud computing technology.We evaluate the proposed algorithm with real massive data.The size of the dataset collected from a mobile core network is 228.7GB.It covers more than three million users.The experiment results demonstrate that the proposed algorithm can achieve higher accuracy than previous methods.</description><subject>Algorithm design and analysis</subject><subject>Big data</subject><subject>cloud computing</subject><subject>Computational modeling</subject><subject>Data mining</subject><subject>Data models</subject><subject>Data preprocessing</subject><subject>graph model</subject><subject>HTTP</subject><subject>Internet</subject><subject>massive data</subject><subject>Parallel algorithms</subject><subject>web usage mining</subject><subject>Web使用挖掘</subject><subject>图模型</subject><subject>并行算法</subject><subject>用户</subject><subject>移动核心网络</subject><subject>网站结构</subject><subject>网络技术</subject><issn>1673-5447</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkL9PAjEYhjtoIkFmB5fG_aC9Hv0x6qFgApGYc3K4lPYrVI87bIkJ_vWWQPRbvuF93nd4ELqhZEgpUaOyHOaEFkNBqJKMX6Ae5YJl46IQV2gQ4wdJJzlnPO-h96UOummg8T9g8VuEgMvGm8-IX8F069bvfddiF7otXugY_TfgWVUt8UTvNX7QMZVSPoEdtBZac8DToHcbvOgsNNfo0ukmwuD8-6h6eqzKWTZ_mT6X9_PM5FLus5Vc8UJolwuhKKHUgeEiJ0ytNIytZUqZsTPO2JTkVObaSCKMBAXaOgmsj0anWRO6GAO4ehf8VodDTUl9NFKXZX00Up-NpMbtqeEB4I_-T-_Oe5uuXX_5dv2HJGkJoEyyX1W9ajo</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Fang, Cheng</creator><creator>Liu, Jun</creator><creator>Lei, Zhenming</creator><general>China Institute of Communications</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20141201</creationdate><title>Parallelized User Clicks Recognition from Massive HTTP Data Based on Dependency Graph Model</title><author>Fang, Cheng ; Liu, Jun ; Lei, Zhenming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-b8b647af27791011fec672039bae5dd399c5fcfcd1fe2182ac807c8e9eadf8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithm design and analysis</topic><topic>Big data</topic><topic>cloud computing</topic><topic>Computational modeling</topic><topic>Data mining</topic><topic>Data models</topic><topic>Data preprocessing</topic><topic>graph model</topic><topic>HTTP</topic><topic>Internet</topic><topic>massive data</topic><topic>Parallel algorithms</topic><topic>web usage mining</topic><topic>Web使用挖掘</topic><topic>图模型</topic><topic>并行算法</topic><topic>用户</topic><topic>移动核心网络</topic><topic>网站结构</topic><topic>网络技术</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Cheng</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Lei, Zhenming</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>China communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fang, Cheng</au><au>Liu, Jun</au><au>Lei, Zhenming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parallelized User Clicks Recognition from Massive HTTP Data Based on Dependency Graph Model</atitle><jtitle>China communications</jtitle><stitle>ChinaComm</stitle><addtitle>China Communications</addtitle><date>2014-12-01</date><risdate>2014</risdate><volume>11</volume><issue>12</issue><spage>13</spage><epage>25</epage><pages>13-25</pages><issn>1673-5447</issn><coden>CCHOBE</coden><abstract>With increasingly complex website structure and continuously advancing web technologies,accurate user clicks recognition from massive HTTP data,which is critical for web usage mining,becomes more difficult.In this paper,we propose a dependency graph model to describe the relationships between web requests.Based on this model,we design and implement a heuristic parallel algorithm to distinguish user clicks with the assistance of cloud computing technology.We evaluate the proposed algorithm with real massive data.The size of the dataset collected from a mobile core network is 228.7GB.It covers more than three million users.The experiment results demonstrate that the proposed algorithm can achieve higher accuracy than previous methods.</abstract><pub>China Institute of Communications</pub><doi>10.1109/CC.2014.7019836</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1673-5447 |
ispartof | China communications, 2014-12, Vol.11 (12), p.13-25 |
issn | 1673-5447 |
language | eng |
recordid | cdi_chongqing_primary_663363138 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithm design and analysis Big data cloud computing Computational modeling Data mining Data models Data preprocessing graph model HTTP Internet massive data Parallel algorithms web usage mining Web使用挖掘 图模型 并行算法 用户 移动核心网络 网站结构 网络技术 |
title | Parallelized User Clicks Recognition from Massive HTTP Data Based on Dependency Graph Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T09%3A25%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parallelized%20User%20Clicks%20Recognition%20from%20Massive%20HTTP%20Data%20Based%20on%20Dependency%20Graph%20Model&rft.jtitle=China%20communications&rft.au=Fang,%20Cheng&rft.date=2014-12-01&rft.volume=11&rft.issue=12&rft.spage=13&rft.epage=25&rft.pages=13-25&rft.issn=1673-5447&rft.coden=CCHOBE&rft_id=info:doi/10.1109/CC.2014.7019836&rft_dat=%3Ccrossref_RIE%3E10_1109_CC_2014_7019836%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=663363138&rft_ieee_id=7019836&rfr_iscdi=true |