Optimum fluorescence emission around 1.8 μm for LiYF4 single crystals of various Tm3+-doping concentrations

In this paper, optical spectra of LiYF4 single crystals doped with Tm3+ ions of various concentrations are reported. The emission intensity at 1.8 ktm first increases with increasing Tm3+ concentration, and reaches a maximum value when the concentration of Tm3+ is about 1.28 mol%, then it decreases...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:中国物理B:英文版 2014-10 (10), p.551-556
1. Verfasser: 李珊珊 夏海平 符立 董艳明 谷雪梅 章践立 王冬杰 张约品 江浩川 陈宝玖
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, optical spectra of LiYF4 single crystals doped with Tm3+ ions of various concentrations are reported. The emission intensity at 1.8 ktm first increases with increasing Tm3+ concentration, and reaches a maximum value when the concentration of Tm3+ is about 1.28 mol%, then it decreases rapidly as the concentration of Tm3+ further increases to 3.49 mol%. The emission lifetime at 1.8 p.m also shows a similar tendency to the emission intensity. The maximum lifetime of 1.8 μm is measured to be 17.68 ms for the sample doped with Tm3+ of 1.28 mol%. The emission cross section of 3F4 level is calculated. The maximum reaches 3.76 × 10 -21 cm2 at 1909 nm. The cross relaxation (3H6, 3H4 →3 F4, 3F4) between Tm3+ ions and the concentration quenching effect are mainly attributed to the change of emission with Tm3+ concentration. The largest quantum efficiency between Tm3+ ions is estimated to be ,-147% from the measured lifetime and calculated radiative lifetime. All the results suggest that the Tm3+/LiYF4 single crystal may have potential applications in 2 μm mid-infrared lasers.
ISSN:1674-1056
2058-3834
DOI:10.1088/1674-1056/23/10/107806