Constraint-Guided Methods with Evolutionary Algorithm for the Automatic Test Task Scheduling Problem
The automatic test task scheduling problem is a key challenge for automatic test system to improve throughput and reduce test time. The constrained Test task scheduling problem (TTSP) contains network precedence constraint relationships between tasks. Constrained optimization and topological sorting...
Gespeichert in:
Veröffentlicht in: | 电子学报:英文版 2014-07, Vol.23 (3), p.616-620 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 620 |
---|---|
container_issue | 3 |
container_start_page | 616 |
container_title | 电子学报:英文版 |
container_volume | 23 |
creator | LU Hui NIU Ruiyao |
description | The automatic test task scheduling problem is a key challenge for automatic test system to improve throughput and reduce test time. The constrained Test task scheduling problem (TTSP) contains network precedence constraint relationships between tasks. Constrained optimization and topological sorting are applied to handle the constraints. A chaotic non-dominated sorting genetic algorithm is used to stress exploitation ability and obtain high quality solutions. For two commonly applied realworld instances, comparisons show that topological sorting performs much better than constrained optimization and some existing algorithms. Simulation results demonstrate the effectiveness of CNSGA combined with topological sorting for solving constrained TTSP with multiobjectives. |
format | Article |
fullrecord | <record><control><sourceid>chongqing</sourceid><recordid>TN_cdi_chongqing_primary_662196329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>662196329</cqvip_id><sourcerecordid>662196329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-d10d396c7903cf7e04bf9132152a1b11793469d5acef8703812c6f1494b45ddf3</originalsourceid><addsrcrecordid>eNotjs1KxDAYAHNQcFn3HYL3Qr4kTZtjKesqrChYz0uanzbYNpqkim9vQU8DcxjmCu2AUFpwUbIbdEjJ94SIipQAdIdMG5aUo_JLLk6rN9bgJ5vHYBL-9nnEx68wrdmHRcUf3ExDiJudsQsR59HiZs1hVtlr3NmUcafSO37VozXr5JcBv8TQT3a-RddOTcke_rlHb_fHrn0ozs-nx7Y5FxpqmgsDxDApdCUJ066yhPdOAqNQUgU9QCUZF9KUSltXV4TVQLVwwCXveWmMY3t099fVY1iGz-3g8hH9vK1fhKAgBaOS_QIhx1HB</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Constraint-Guided Methods with Evolutionary Algorithm for the Automatic Test Task Scheduling Problem</title><source>Alma/SFX Local Collection</source><creator>LU Hui NIU Ruiyao</creator><creatorcontrib>LU Hui NIU Ruiyao</creatorcontrib><description>The automatic test task scheduling problem is a key challenge for automatic test system to improve throughput and reduce test time. The constrained Test task scheduling problem (TTSP) contains network precedence constraint relationships between tasks. Constrained optimization and topological sorting are applied to handle the constraints. A chaotic non-dominated sorting genetic algorithm is used to stress exploitation ability and obtain high quality solutions. For two commonly applied realworld instances, comparisons show that topological sorting performs much better than constrained optimization and some existing algorithms. Simulation results demonstrate the effectiveness of CNSGA combined with topological sorting for solving constrained TTSP with multiobjectives.</description><identifier>ISSN: 1022-4653</identifier><language>eng</language><subject>引导 ; 拓扑排序 ; 测试任务 ; 约束优化 ; 自动测试系统 ; 调度问题 ; 进化算法 ; 非支配排序遗传算法</subject><ispartof>电子学报:英文版, 2014-07, Vol.23 (3), p.616-620</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86774X/86774X.jpg</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>LU Hui NIU Ruiyao</creatorcontrib><title>Constraint-Guided Methods with Evolutionary Algorithm for the Automatic Test Task Scheduling Problem</title><title>电子学报:英文版</title><addtitle>Chinese of Journal Electronics</addtitle><description>The automatic test task scheduling problem is a key challenge for automatic test system to improve throughput and reduce test time. The constrained Test task scheduling problem (TTSP) contains network precedence constraint relationships between tasks. Constrained optimization and topological sorting are applied to handle the constraints. A chaotic non-dominated sorting genetic algorithm is used to stress exploitation ability and obtain high quality solutions. For two commonly applied realworld instances, comparisons show that topological sorting performs much better than constrained optimization and some existing algorithms. Simulation results demonstrate the effectiveness of CNSGA combined with topological sorting for solving constrained TTSP with multiobjectives.</description><subject>引导</subject><subject>拓扑排序</subject><subject>测试任务</subject><subject>约束优化</subject><subject>自动测试系统</subject><subject>调度问题</subject><subject>进化算法</subject><subject>非支配排序遗传算法</subject><issn>1022-4653</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNotjs1KxDAYAHNQcFn3HYL3Qr4kTZtjKesqrChYz0uanzbYNpqkim9vQU8DcxjmCu2AUFpwUbIbdEjJ94SIipQAdIdMG5aUo_JLLk6rN9bgJ5vHYBL-9nnEx68wrdmHRcUf3ExDiJudsQsR59HiZs1hVtlr3NmUcafSO37VozXr5JcBv8TQT3a-RddOTcke_rlHb_fHrn0ozs-nx7Y5FxpqmgsDxDApdCUJ066yhPdOAqNQUgU9QCUZF9KUSltXV4TVQLVwwCXveWmMY3t099fVY1iGz-3g8hH9vK1fhKAgBaOS_QIhx1HB</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>LU Hui NIU Ruiyao</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope></search><sort><creationdate>20140701</creationdate><title>Constraint-Guided Methods with Evolutionary Algorithm for the Automatic Test Task Scheduling Problem</title><author>LU Hui NIU Ruiyao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-d10d396c7903cf7e04bf9132152a1b11793469d5acef8703812c6f1494b45ddf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>引导</topic><topic>拓扑排序</topic><topic>测试任务</topic><topic>约束优化</topic><topic>自动测试系统</topic><topic>调度问题</topic><topic>进化算法</topic><topic>非支配排序遗传算法</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LU Hui NIU Ruiyao</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><jtitle>电子学报:英文版</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LU Hui NIU Ruiyao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constraint-Guided Methods with Evolutionary Algorithm for the Automatic Test Task Scheduling Problem</atitle><jtitle>电子学报:英文版</jtitle><addtitle>Chinese of Journal Electronics</addtitle><date>2014-07-01</date><risdate>2014</risdate><volume>23</volume><issue>3</issue><spage>616</spage><epage>620</epage><pages>616-620</pages><issn>1022-4653</issn><abstract>The automatic test task scheduling problem is a key challenge for automatic test system to improve throughput and reduce test time. The constrained Test task scheduling problem (TTSP) contains network precedence constraint relationships between tasks. Constrained optimization and topological sorting are applied to handle the constraints. A chaotic non-dominated sorting genetic algorithm is used to stress exploitation ability and obtain high quality solutions. For two commonly applied realworld instances, comparisons show that topological sorting performs much better than constrained optimization and some existing algorithms. Simulation results demonstrate the effectiveness of CNSGA combined with topological sorting for solving constrained TTSP with multiobjectives.</abstract><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1022-4653 |
ispartof | 电子学报:英文版, 2014-07, Vol.23 (3), p.616-620 |
issn | 1022-4653 |
language | eng |
recordid | cdi_chongqing_primary_662196329 |
source | Alma/SFX Local Collection |
subjects | 引导 拓扑排序 测试任务 约束优化 自动测试系统 调度问题 进化算法 非支配排序遗传算法 |
title | Constraint-Guided Methods with Evolutionary Algorithm for the Automatic Test Task Scheduling Problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T21%3A20%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-chongqing&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constraint-Guided%20Methods%20with%20Evolutionary%20Algorithm%20for%20the%20Automatic%20Test%20Task%20Scheduling%20Problem&rft.jtitle=%E7%94%B5%E5%AD%90%E5%AD%A6%E6%8A%A5%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=LU%20Hui%20NIU%20Ruiyao&rft.date=2014-07-01&rft.volume=23&rft.issue=3&rft.spage=616&rft.epage=620&rft.pages=616-620&rft.issn=1022-4653&rft_id=info:doi/&rft_dat=%3Cchongqing%3E662196329%3C/chongqing%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=662196329&rfr_iscdi=true |