Constraint-Guided Methods with Evolutionary Algorithm for the Automatic Test Task Scheduling Problem

The automatic test task scheduling problem is a key challenge for automatic test system to improve throughput and reduce test time. The constrained Test task scheduling problem (TTSP) contains network precedence constraint relationships between tasks. Constrained optimization and topological sorting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:电子学报:英文版 2014-07, Vol.23 (3), p.616-620
1. Verfasser: LU Hui NIU Ruiyao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 620
container_issue 3
container_start_page 616
container_title 电子学报:英文版
container_volume 23
creator LU Hui NIU Ruiyao
description The automatic test task scheduling problem is a key challenge for automatic test system to improve throughput and reduce test time. The constrained Test task scheduling problem (TTSP) contains network precedence constraint relationships between tasks. Constrained optimization and topological sorting are applied to handle the constraints. A chaotic non-dominated sorting genetic algorithm is used to stress exploitation ability and obtain high quality solutions. For two commonly applied realworld instances, comparisons show that topological sorting performs much better than constrained optimization and some existing algorithms. Simulation results demonstrate the effectiveness of CNSGA combined with topological sorting for solving constrained TTSP with multiobjectives.
format Article
fullrecord <record><control><sourceid>chongqing</sourceid><recordid>TN_cdi_chongqing_primary_662196329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>662196329</cqvip_id><sourcerecordid>662196329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-d10d396c7903cf7e04bf9132152a1b11793469d5acef8703812c6f1494b45ddf3</originalsourceid><addsrcrecordid>eNotjs1KxDAYAHNQcFn3HYL3Qr4kTZtjKesqrChYz0uanzbYNpqkim9vQU8DcxjmCu2AUFpwUbIbdEjJ94SIipQAdIdMG5aUo_JLLk6rN9bgJ5vHYBL-9nnEx68wrdmHRcUf3ExDiJudsQsR59HiZs1hVtlr3NmUcafSO37VozXr5JcBv8TQT3a-RddOTcke_rlHb_fHrn0ozs-nx7Y5FxpqmgsDxDApdCUJ066yhPdOAqNQUgU9QCUZF9KUSltXV4TVQLVwwCXveWmMY3t099fVY1iGz-3g8hH9vK1fhKAgBaOS_QIhx1HB</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Constraint-Guided Methods with Evolutionary Algorithm for the Automatic Test Task Scheduling Problem</title><source>Alma/SFX Local Collection</source><creator>LU Hui NIU Ruiyao</creator><creatorcontrib>LU Hui NIU Ruiyao</creatorcontrib><description>The automatic test task scheduling problem is a key challenge for automatic test system to improve throughput and reduce test time. The constrained Test task scheduling problem (TTSP) contains network precedence constraint relationships between tasks. Constrained optimization and topological sorting are applied to handle the constraints. A chaotic non-dominated sorting genetic algorithm is used to stress exploitation ability and obtain high quality solutions. For two commonly applied realworld instances, comparisons show that topological sorting performs much better than constrained optimization and some existing algorithms. Simulation results demonstrate the effectiveness of CNSGA combined with topological sorting for solving constrained TTSP with multiobjectives.</description><identifier>ISSN: 1022-4653</identifier><language>eng</language><subject>引导 ; 拓扑排序 ; 测试任务 ; 约束优化 ; 自动测试系统 ; 调度问题 ; 进化算法 ; 非支配排序遗传算法</subject><ispartof>电子学报:英文版, 2014-07, Vol.23 (3), p.616-620</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86774X/86774X.jpg</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>LU Hui NIU Ruiyao</creatorcontrib><title>Constraint-Guided Methods with Evolutionary Algorithm for the Automatic Test Task Scheduling Problem</title><title>电子学报:英文版</title><addtitle>Chinese of Journal Electronics</addtitle><description>The automatic test task scheduling problem is a key challenge for automatic test system to improve throughput and reduce test time. The constrained Test task scheduling problem (TTSP) contains network precedence constraint relationships between tasks. Constrained optimization and topological sorting are applied to handle the constraints. A chaotic non-dominated sorting genetic algorithm is used to stress exploitation ability and obtain high quality solutions. For two commonly applied realworld instances, comparisons show that topological sorting performs much better than constrained optimization and some existing algorithms. Simulation results demonstrate the effectiveness of CNSGA combined with topological sorting for solving constrained TTSP with multiobjectives.</description><subject>引导</subject><subject>拓扑排序</subject><subject>测试任务</subject><subject>约束优化</subject><subject>自动测试系统</subject><subject>调度问题</subject><subject>进化算法</subject><subject>非支配排序遗传算法</subject><issn>1022-4653</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNotjs1KxDAYAHNQcFn3HYL3Qr4kTZtjKesqrChYz0uanzbYNpqkim9vQU8DcxjmCu2AUFpwUbIbdEjJ94SIipQAdIdMG5aUo_JLLk6rN9bgJ5vHYBL-9nnEx68wrdmHRcUf3ExDiJudsQsR59HiZs1hVtlr3NmUcafSO37VozXr5JcBv8TQT3a-RddOTcke_rlHb_fHrn0ozs-nx7Y5FxpqmgsDxDApdCUJ066yhPdOAqNQUgU9QCUZF9KUSltXV4TVQLVwwCXveWmMY3t099fVY1iGz-3g8hH9vK1fhKAgBaOS_QIhx1HB</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>LU Hui NIU Ruiyao</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope></search><sort><creationdate>20140701</creationdate><title>Constraint-Guided Methods with Evolutionary Algorithm for the Automatic Test Task Scheduling Problem</title><author>LU Hui NIU Ruiyao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-d10d396c7903cf7e04bf9132152a1b11793469d5acef8703812c6f1494b45ddf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>引导</topic><topic>拓扑排序</topic><topic>测试任务</topic><topic>约束优化</topic><topic>自动测试系统</topic><topic>调度问题</topic><topic>进化算法</topic><topic>非支配排序遗传算法</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LU Hui NIU Ruiyao</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><jtitle>电子学报:英文版</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LU Hui NIU Ruiyao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constraint-Guided Methods with Evolutionary Algorithm for the Automatic Test Task Scheduling Problem</atitle><jtitle>电子学报:英文版</jtitle><addtitle>Chinese of Journal Electronics</addtitle><date>2014-07-01</date><risdate>2014</risdate><volume>23</volume><issue>3</issue><spage>616</spage><epage>620</epage><pages>616-620</pages><issn>1022-4653</issn><abstract>The automatic test task scheduling problem is a key challenge for automatic test system to improve throughput and reduce test time. The constrained Test task scheduling problem (TTSP) contains network precedence constraint relationships between tasks. Constrained optimization and topological sorting are applied to handle the constraints. A chaotic non-dominated sorting genetic algorithm is used to stress exploitation ability and obtain high quality solutions. For two commonly applied realworld instances, comparisons show that topological sorting performs much better than constrained optimization and some existing algorithms. Simulation results demonstrate the effectiveness of CNSGA combined with topological sorting for solving constrained TTSP with multiobjectives.</abstract><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1022-4653
ispartof 电子学报:英文版, 2014-07, Vol.23 (3), p.616-620
issn 1022-4653
language eng
recordid cdi_chongqing_primary_662196329
source Alma/SFX Local Collection
subjects 引导
拓扑排序
测试任务
约束优化
自动测试系统
调度问题
进化算法
非支配排序遗传算法
title Constraint-Guided Methods with Evolutionary Algorithm for the Automatic Test Task Scheduling Problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T21%3A20%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-chongqing&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constraint-Guided%20Methods%20with%20Evolutionary%20Algorithm%20for%20the%20Automatic%20Test%20Task%20Scheduling%20Problem&rft.jtitle=%E7%94%B5%E5%AD%90%E5%AD%A6%E6%8A%A5%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=LU%20Hui%20NIU%20Ruiyao&rft.date=2014-07-01&rft.volume=23&rft.issue=3&rft.spage=616&rft.epage=620&rft.pages=616-620&rft.issn=1022-4653&rft_id=info:doi/&rft_dat=%3Cchongqing%3E662196329%3C/chongqing%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=662196329&rfr_iscdi=true