Potassium 2-(1-hydroxypentyl)-benzoate promotes long-term potentiation in Aβ1-42-injected rats and APP/PS1 transgenic mice
Aim: Potassium 2-(1-hydroxypentyl)-benzoate (d/-PHPB) is a new drug candidate for ischemic stroke. The aim of this study was to investigate the effects of dI-PHPB on memory deficits and long-term potentiation (LTP) impairment in animal models of Alzheimer's disease. Methods: The expression of NMDA r...
Gespeichert in:
Veröffentlicht in: | 中国药理学报:英文版 2014 (7), p.869-878 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 878 |
---|---|
container_issue | 7 |
container_start_page | 869 |
container_title | 中国药理学报:英文版 |
container_volume | |
creator | Ping-ping LI Wei-ping WANG Zhi-hui LIU Shao-feng XU Wen-wen LU Ling WANG Xiao-liang WANG |
description | Aim: Potassium 2-(1-hydroxypentyl)-benzoate (d/-PHPB) is a new drug candidate for ischemic stroke. The aim of this study was to investigate the effects of dI-PHPB on memory deficits and long-term potentiation (LTP) impairment in animal models of Alzheimer's disease. Methods: The expression of NMDA receptor subunits GluN1 and GluN2B in the hippocampus and cortex of APP/PS1 transgenic mice were detected using Western blot analysis. Memory deficits of the mice were evaluated with the passive avoidance test. LTP impairment was studied in the dentate region of Aβ1-42-injected rats and APP/PS1 transgenic mice. Results: APP/PS1 transgenic mice showed significantly lower levels of GluN1 and p-GluN2B in hippocampus, and chronic administration of dI-PHPB (100 mg·kg-1·d1, po) reversed the downregulation of p-GluN2B, but did not change GluN1 level in the hippocampus. Furthermore, chronic administration of d/-PHPB reversed the memory deficits in APP/PS1 transgenic mice. In the dentate region of normal rats, injection of dI-PHPB (100 μmol/L, icv) did not change the basal synaptic transmission, but significantly enhanced the high-frequency stimulation (HFS)-induced LTP, which was completely prevented by pre-injection of APV (150 μmol/L, icv). Chronic administration of dI-PHPB (100 mg·kg-1·d-1, po) reversed LTP impairment in Aβ1-42 -injected normal rats and APP/PS1 transgenic mice. Conclusion: Chronic administration of d/-PHPB improves learning and memory and promotes LTP in the animal models of Alzheimer's disease, possibly via increasing p-GluN2B expression in the hippocampus. |
format | Article |
fullrecord | <record><control><sourceid>chongqing</sourceid><recordid>TN_cdi_chongqing_primary_661920104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>661920104</cqvip_id><sourcerecordid>661920104</sourcerecordid><originalsourceid>FETCH-chongqing_primary_6619201043</originalsourceid><addsrcrecordid>eNqNjUFOwzAQRa0KJArlDiP2FraTJnRZIRDLSHRfmWSauorHqT1IhA1buA7rnoGr9Apk0QN09f6TvvQmYqrLfC5LM88vxl2UWubqIbsS1yntlMpMphdT8VUFtim5dw9GHg_fWm6HJoaPoUfioTsefuQb0mewjNDH4ANjgi5QKxmjh350YmfZBQJHsPz7HTNGOtphzdhAtJzAUgPLqrqvXjVwtJRaJFeDdzXOxOXGdglvT7wRd89Pq8cXWW_HyN5Ru-6j8zYO66LQC6O0yrOzTv8uTlLa</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Potassium 2-(1-hydroxypentyl)-benzoate promotes long-term potentiation in Aβ1-42-injected rats and APP/PS1 transgenic mice</title><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ping-ping LI Wei-ping WANG Zhi-hui LIU Shao-feng XU Wen-wen LU Ling WANG Xiao-liang WANG</creator><creatorcontrib>Ping-ping LI Wei-ping WANG Zhi-hui LIU Shao-feng XU Wen-wen LU Ling WANG Xiao-liang WANG</creatorcontrib><description>Aim: Potassium 2-(1-hydroxypentyl)-benzoate (d/-PHPB) is a new drug candidate for ischemic stroke. The aim of this study was to investigate the effects of dI-PHPB on memory deficits and long-term potentiation (LTP) impairment in animal models of Alzheimer's disease. Methods: The expression of NMDA receptor subunits GluN1 and GluN2B in the hippocampus and cortex of APP/PS1 transgenic mice were detected using Western blot analysis. Memory deficits of the mice were evaluated with the passive avoidance test. LTP impairment was studied in the dentate region of Aβ1-42-injected rats and APP/PS1 transgenic mice. Results: APP/PS1 transgenic mice showed significantly lower levels of GluN1 and p-GluN2B in hippocampus, and chronic administration of dI-PHPB (100 mg·kg-1·d1, po) reversed the downregulation of p-GluN2B, but did not change GluN1 level in the hippocampus. Furthermore, chronic administration of d/-PHPB reversed the memory deficits in APP/PS1 transgenic mice. In the dentate region of normal rats, injection of dI-PHPB (100 μmol/L, icv) did not change the basal synaptic transmission, but significantly enhanced the high-frequency stimulation (HFS)-induced LTP, which was completely prevented by pre-injection of APV (150 μmol/L, icv). Chronic administration of dI-PHPB (100 mg·kg-1·d-1, po) reversed LTP impairment in Aβ1-42 -injected normal rats and APP/PS1 transgenic mice. Conclusion: Chronic administration of d/-PHPB improves learning and memory and promotes LTP in the animal models of Alzheimer's disease, possibly via increasing p-GluN2B expression in the hippocampus.</description><identifier>ISSN: 1671-4083</identifier><identifier>EISSN: 1745-7254</identifier><language>eng</language><subject>APP ; PS1 ; 大鼠 ; 戊基 ; 羟基 ; 苯甲酸 ; 转基因小鼠 ; 长时程增强</subject><ispartof>中国药理学报:英文版, 2014 (7), p.869-878</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/95561A/95561A.jpg</thumbnail><link.rule.ids>314,780,784,4024</link.rule.ids></links><search><creatorcontrib>Ping-ping LI Wei-ping WANG Zhi-hui LIU Shao-feng XU Wen-wen LU Ling WANG Xiao-liang WANG</creatorcontrib><title>Potassium 2-(1-hydroxypentyl)-benzoate promotes long-term potentiation in Aβ1-42-injected rats and APP/PS1 transgenic mice</title><title>中国药理学报:英文版</title><addtitle>Acta Pharmacologica Sinica</addtitle><description>Aim: Potassium 2-(1-hydroxypentyl)-benzoate (d/-PHPB) is a new drug candidate for ischemic stroke. The aim of this study was to investigate the effects of dI-PHPB on memory deficits and long-term potentiation (LTP) impairment in animal models of Alzheimer's disease. Methods: The expression of NMDA receptor subunits GluN1 and GluN2B in the hippocampus and cortex of APP/PS1 transgenic mice were detected using Western blot analysis. Memory deficits of the mice were evaluated with the passive avoidance test. LTP impairment was studied in the dentate region of Aβ1-42-injected rats and APP/PS1 transgenic mice. Results: APP/PS1 transgenic mice showed significantly lower levels of GluN1 and p-GluN2B in hippocampus, and chronic administration of dI-PHPB (100 mg·kg-1·d1, po) reversed the downregulation of p-GluN2B, but did not change GluN1 level in the hippocampus. Furthermore, chronic administration of d/-PHPB reversed the memory deficits in APP/PS1 transgenic mice. In the dentate region of normal rats, injection of dI-PHPB (100 μmol/L, icv) did not change the basal synaptic transmission, but significantly enhanced the high-frequency stimulation (HFS)-induced LTP, which was completely prevented by pre-injection of APV (150 μmol/L, icv). Chronic administration of dI-PHPB (100 mg·kg-1·d-1, po) reversed LTP impairment in Aβ1-42 -injected normal rats and APP/PS1 transgenic mice. Conclusion: Chronic administration of d/-PHPB improves learning and memory and promotes LTP in the animal models of Alzheimer's disease, possibly via increasing p-GluN2B expression in the hippocampus.</description><subject>APP</subject><subject>PS1</subject><subject>大鼠</subject><subject>戊基</subject><subject>羟基</subject><subject>苯甲酸</subject><subject>转基因小鼠</subject><subject>长时程增强</subject><issn>1671-4083</issn><issn>1745-7254</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNjUFOwzAQRa0KJArlDiP2FraTJnRZIRDLSHRfmWSauorHqT1IhA1buA7rnoGr9Apk0QN09f6TvvQmYqrLfC5LM88vxl2UWubqIbsS1yntlMpMphdT8VUFtim5dw9GHg_fWm6HJoaPoUfioTsefuQb0mewjNDH4ANjgi5QKxmjh350YmfZBQJHsPz7HTNGOtphzdhAtJzAUgPLqrqvXjVwtJRaJFeDdzXOxOXGdglvT7wRd89Pq8cXWW_HyN5Ru-6j8zYO66LQC6O0yrOzTv8uTlLa</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Ping-ping LI Wei-ping WANG Zhi-hui LIU Shao-feng XU Wen-wen LU Ling WANG Xiao-liang WANG</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W91</scope><scope>~WA</scope></search><sort><creationdate>2014</creationdate><title>Potassium 2-(1-hydroxypentyl)-benzoate promotes long-term potentiation in Aβ1-42-injected rats and APP/PS1 transgenic mice</title><author>Ping-ping LI Wei-ping WANG Zhi-hui LIU Shao-feng XU Wen-wen LU Ling WANG Xiao-liang WANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-chongqing_primary_6619201043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>APP</topic><topic>PS1</topic><topic>大鼠</topic><topic>戊基</topic><topic>羟基</topic><topic>苯甲酸</topic><topic>转基因小鼠</topic><topic>长时程增强</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ping-ping LI Wei-ping WANG Zhi-hui LIU Shao-feng XU Wen-wen LU Ling WANG Xiao-liang WANG</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-医药卫生</collection><collection>中文科技期刊数据库- 镜像站点</collection><jtitle>中国药理学报:英文版</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ping-ping LI Wei-ping WANG Zhi-hui LIU Shao-feng XU Wen-wen LU Ling WANG Xiao-liang WANG</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Potassium 2-(1-hydroxypentyl)-benzoate promotes long-term potentiation in Aβ1-42-injected rats and APP/PS1 transgenic mice</atitle><jtitle>中国药理学报:英文版</jtitle><addtitle>Acta Pharmacologica Sinica</addtitle><date>2014</date><risdate>2014</risdate><issue>7</issue><spage>869</spage><epage>878</epage><pages>869-878</pages><issn>1671-4083</issn><eissn>1745-7254</eissn><abstract>Aim: Potassium 2-(1-hydroxypentyl)-benzoate (d/-PHPB) is a new drug candidate for ischemic stroke. The aim of this study was to investigate the effects of dI-PHPB on memory deficits and long-term potentiation (LTP) impairment in animal models of Alzheimer's disease. Methods: The expression of NMDA receptor subunits GluN1 and GluN2B in the hippocampus and cortex of APP/PS1 transgenic mice were detected using Western blot analysis. Memory deficits of the mice were evaluated with the passive avoidance test. LTP impairment was studied in the dentate region of Aβ1-42-injected rats and APP/PS1 transgenic mice. Results: APP/PS1 transgenic mice showed significantly lower levels of GluN1 and p-GluN2B in hippocampus, and chronic administration of dI-PHPB (100 mg·kg-1·d1, po) reversed the downregulation of p-GluN2B, but did not change GluN1 level in the hippocampus. Furthermore, chronic administration of d/-PHPB reversed the memory deficits in APP/PS1 transgenic mice. In the dentate region of normal rats, injection of dI-PHPB (100 μmol/L, icv) did not change the basal synaptic transmission, but significantly enhanced the high-frequency stimulation (HFS)-induced LTP, which was completely prevented by pre-injection of APV (150 μmol/L, icv). Chronic administration of dI-PHPB (100 mg·kg-1·d-1, po) reversed LTP impairment in Aβ1-42 -injected normal rats and APP/PS1 transgenic mice. Conclusion: Chronic administration of d/-PHPB improves learning and memory and promotes LTP in the animal models of Alzheimer's disease, possibly via increasing p-GluN2B expression in the hippocampus.</abstract></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1671-4083 |
ispartof | 中国药理学报:英文版, 2014 (7), p.869-878 |
issn | 1671-4083 1745-7254 |
language | eng |
recordid | cdi_chongqing_primary_661920104 |
source | PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | APP PS1 大鼠 戊基 羟基 苯甲酸 转基因小鼠 长时程增强 |
title | Potassium 2-(1-hydroxypentyl)-benzoate promotes long-term potentiation in Aβ1-42-injected rats and APP/PS1 transgenic mice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A56%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-chongqing&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Potassium%202-%EF%BC%881-hydroxypentyl%EF%BC%89-benzoate%20promotes%20long-term%20potentiation%20in%20A%CE%B21-42-injected%20rats%20and%20APP/PS1%20transgenic%20mice&rft.jtitle=%E4%B8%AD%E5%9B%BD%E8%8D%AF%E7%90%86%E5%AD%A6%E6%8A%A5%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=Ping-ping%20LI%20Wei-ping%20WANG%20Zhi-hui%20LIU%20Shao-feng%20XU%20Wen-wen%20LU%20Ling%20WANG%20Xiao-liang%20WANG&rft.date=2014&rft.issue=7&rft.spage=869&rft.epage=878&rft.pages=869-878&rft.issn=1671-4083&rft.eissn=1745-7254&rft_id=info:doi/&rft_dat=%3Cchongqing%3E661920104%3C/chongqing%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=661920104&rfr_iscdi=true |