Novel Wronskian Condition and New Exact Solutions to a (3+1)-Dimensional Generalized KP Equation
Utilizing the Wronskian technique, a combined Wronskian condition is established for a (3+1)-dimensional generalized KP equation. The generating functions for matrix entries satisfy a linear system of new partial differential equations. Moreover, as applications, examples of Wronskian determinant so...
Gespeichert in:
Veröffentlicht in: | 理论物理通讯:英文版 2013, Vol.60 (11), p.556-560 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 560 |
---|---|
container_issue | 11 |
container_start_page | 556 |
container_title | 理论物理通讯:英文版 |
container_volume | 60 |
creator | 吴建平 耿献国 |
description | Utilizing the Wronskian technique, a combined Wronskian condition is established for a (3+1)-dimensional generalized KP equation. The generating functions for matrix entries satisfy a linear system of new partial differential equations. Moreover, as applications, examples of Wronskian determinant solutions, including N-soliton solutions, periodic solutions and rational solutions, are computed. |
format | Article |
fullrecord | <record><control><sourceid>chongqing</sourceid><recordid>TN_cdi_chongqing_primary_47740719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>47740719</cqvip_id><sourcerecordid>47740719</sourcerecordid><originalsourceid>FETCH-chongqing_primary_477407193</originalsourceid><addsrcrecordid>eNqNi10KgkAURuehoN893BYgjFpJz2YFQQQFPcpFx5oa75Rjvyso2pJ7cgsltICePjjnfDXW5M7AtYY2dxqsZcyec-54Q7vJkoW-CAWbTJM5SCTwNcUyl5oAKYaFuEJwwyiHlVbnChvINSCUxdMti7ddFi9rLFNB5utQwVSQyFDJh4hhvoTgdMbq1WH1BJUR3d-2WW8SrP2ZFe00bU-StuExkylm97DveX3u2SP3n-YDPRpHqw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Novel Wronskian Condition and New Exact Solutions to a (3+1)-Dimensional Generalized KP Equation</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><source>Alma/SFX Local Collection</source><creator>吴建平 耿献国</creator><creatorcontrib>吴建平 耿献国</creatorcontrib><description>Utilizing the Wronskian technique, a combined Wronskian condition is established for a (3+1)-dimensional generalized KP equation. The generating functions for matrix entries satisfy a linear system of new partial differential equations. Moreover, as applications, examples of Wronskian determinant solutions, including N-soliton solutions, periodic solutions and rational solutions, are computed.</description><identifier>ISSN: 0253-6102</identifier><language>eng</language><subject>KP方程 ; N-孤子解 ; 偏微分方程 ; 小说 ; 广义 ; 朗斯基行列式 ; 精确解 ; 线性系统</subject><ispartof>理论物理通讯:英文版, 2013, Vol.60 (11), p.556-560</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/83837X/83837X.jpg</thumbnail><link.rule.ids>314,776,780,4009</link.rule.ids></links><search><creatorcontrib>吴建平 耿献国</creatorcontrib><title>Novel Wronskian Condition and New Exact Solutions to a (3+1)-Dimensional Generalized KP Equation</title><title>理论物理通讯:英文版</title><addtitle>Communications in Theoretical Physics</addtitle><description>Utilizing the Wronskian technique, a combined Wronskian condition is established for a (3+1)-dimensional generalized KP equation. The generating functions for matrix entries satisfy a linear system of new partial differential equations. Moreover, as applications, examples of Wronskian determinant solutions, including N-soliton solutions, periodic solutions and rational solutions, are computed.</description><subject>KP方程</subject><subject>N-孤子解</subject><subject>偏微分方程</subject><subject>小说</subject><subject>广义</subject><subject>朗斯基行列式</subject><subject>精确解</subject><subject>线性系统</subject><issn>0253-6102</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNi10KgkAURuehoN893BYgjFpJz2YFQQQFPcpFx5oa75Rjvyso2pJ7cgsltICePjjnfDXW5M7AtYY2dxqsZcyec-54Q7vJkoW-CAWbTJM5SCTwNcUyl5oAKYaFuEJwwyiHlVbnChvINSCUxdMti7ddFi9rLFNB5utQwVSQyFDJh4hhvoTgdMbq1WH1BJUR3d-2WW8SrP2ZFe00bU-StuExkylm97DveX3u2SP3n-YDPRpHqw</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>吴建平 耿献国</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope></search><sort><creationdate>2013</creationdate><title>Novel Wronskian Condition and New Exact Solutions to a (3+1)-Dimensional Generalized KP Equation</title><author>吴建平 耿献国</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-chongqing_primary_477407193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>KP方程</topic><topic>N-孤子解</topic><topic>偏微分方程</topic><topic>小说</topic><topic>广义</topic><topic>朗斯基行列式</topic><topic>精确解</topic><topic>线性系统</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>吴建平 耿献国</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><jtitle>理论物理通讯:英文版</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>吴建平 耿献国</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Wronskian Condition and New Exact Solutions to a (3+1)-Dimensional Generalized KP Equation</atitle><jtitle>理论物理通讯:英文版</jtitle><addtitle>Communications in Theoretical Physics</addtitle><date>2013</date><risdate>2013</risdate><volume>60</volume><issue>11</issue><spage>556</spage><epage>560</epage><pages>556-560</pages><issn>0253-6102</issn><abstract>Utilizing the Wronskian technique, a combined Wronskian condition is established for a (3+1)-dimensional generalized KP equation. The generating functions for matrix entries satisfy a linear system of new partial differential equations. Moreover, as applications, examples of Wronskian determinant solutions, including N-soliton solutions, periodic solutions and rational solutions, are computed.</abstract></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0253-6102 |
ispartof | 理论物理通讯:英文版, 2013, Vol.60 (11), p.556-560 |
issn | 0253-6102 |
language | eng |
recordid | cdi_chongqing_primary_47740719 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link; Alma/SFX Local Collection |
subjects | KP方程 N-孤子解 偏微分方程 小说 广义 朗斯基行列式 精确解 线性系统 |
title | Novel Wronskian Condition and New Exact Solutions to a (3+1)-Dimensional Generalized KP Equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A38%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-chongqing&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Wronskian%20Condition%20and%20New%20Exact%20Solutions%20to%20a%20%EF%BC%883%EF%BC%8B1%EF%BC%89-Dimensional%20Generalized%20KP%20Equation&rft.jtitle=%E7%90%86%E8%AE%BA%E7%89%A9%E7%90%86%E9%80%9A%E8%AE%AF%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E5%90%B4%E5%BB%BA%E5%B9%B3%20%E8%80%BF%E7%8C%AE%E5%9B%BD&rft.date=2013&rft.volume=60&rft.issue=11&rft.spage=556&rft.epage=560&rft.pages=556-560&rft.issn=0253-6102&rft_id=info:doi/&rft_dat=%3Cchongqing%3E47740719%3C/chongqing%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=47740719&rfr_iscdi=true |