The Recognition of Fault Type of Transmission Line Based on Wavelet Transmission and FNN
The article firstly utilizes wavelet transform to do denoising, filtering and other preprocessing to the information collected and realizing the purification of three-phase component and zero sequence current component which used for determining the ground fault, then using the effective combination...
Gespeichert in:
Veröffentlicht in: | 通讯和计算机:中英文版 2013, Vol.10 (5), p.724-729 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 729 |
---|---|
container_issue | 5 |
container_start_page | 724 |
container_title | 通讯和计算机:中英文版 |
container_volume | 10 |
creator | Li-Zhang Shun Ling-Chen Qiao Zhi-Wang Shun-Lv Yang He-Liu |
description | The article firstly utilizes wavelet transform to do denoising, filtering and other preprocessing to the information collected and realizing the purification of three-phase component and zero sequence current component which used for determining the ground fault, then using the effective combination between fuzzy set theory and neural network to build five-layer fuzzy neural network, taking T-S fuzzy reasoning model as an interference layer in network, then regarding the purified and optimized fault characteristic quantity preprocessed by wavelet transform as the input of fuzzy neural network, regarding fault type as output to train and learn the fuzzy neural network to further realize the way of recognition of fault type. Finally, simulation testing shows this way can effectively realize the recognition of fault type, strongly enhancing the recognition rate of fault types. |
format | Article |
fullrecord | <record><control><sourceid>chongqing</sourceid><recordid>TN_cdi_chongqing_primary_47634551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>47634551</cqvip_id><sourcerecordid>47634551</sourcerecordid><originalsourceid>FETCH-chongqing_primary_476345513</originalsourceid><addsrcrecordid>eNqNis0KgkAURocoyH7eYXoAYWScJrdF0iJaxEDtZNCrTuiMeS3w7VNo067V9x3OmRAviDjzAyH4dPgi3PlSsmhOFogPxoRkXHrkrkqgV0hdYU1nnKUup7F-VR1VfQMjqVZbrA3iaM_GAt1rhIwOdNNvqKD7TbTNaHy5rMgs1xXC-rtLsomP6nDy09LZ4mlskTStqXXbJ6Hc8lCIgP_TfAAo80Ea</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Recognition of Fault Type of Transmission Line Based on Wavelet Transmission and FNN</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Li-Zhang Shun Ling-Chen Qiao Zhi-Wang Shun-Lv Yang He-Liu</creator><creatorcontrib>Li-Zhang Shun Ling-Chen Qiao Zhi-Wang Shun-Lv Yang He-Liu</creatorcontrib><description>The article firstly utilizes wavelet transform to do denoising, filtering and other preprocessing to the information collected and realizing the purification of three-phase component and zero sequence current component which used for determining the ground fault, then using the effective combination between fuzzy set theory and neural network to build five-layer fuzzy neural network, taking T-S fuzzy reasoning model as an interference layer in network, then regarding the purified and optimized fault characteristic quantity preprocessed by wavelet transform as the input of fuzzy neural network, regarding fault type as output to train and learn the fuzzy neural network to further realize the way of recognition of fault type. Finally, simulation testing shows this way can effectively realize the recognition of fault type, strongly enhancing the recognition rate of fault types.</description><identifier>ISSN: 1548-7709</identifier><identifier>EISSN: 1930-1553</identifier><language>eng</language><subject>小波变换 ; 序电流分量 ; 故障类型 ; 模糊推理模型 ; 模糊神经网络 ; 模糊集理论 ; 识别率 ; 输电线路</subject><ispartof>通讯和计算机:中英文版, 2013, Vol.10 (5), p.724-729</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/88584X/88584X.jpg</thumbnail><link.rule.ids>315,781,785,4025</link.rule.ids></links><search><creatorcontrib>Li-Zhang Shun Ling-Chen Qiao Zhi-Wang Shun-Lv Yang He-Liu</creatorcontrib><title>The Recognition of Fault Type of Transmission Line Based on Wavelet Transmission and FNN</title><title>通讯和计算机:中英文版</title><addtitle>Journal of Communication and Computer</addtitle><description>The article firstly utilizes wavelet transform to do denoising, filtering and other preprocessing to the information collected and realizing the purification of three-phase component and zero sequence current component which used for determining the ground fault, then using the effective combination between fuzzy set theory and neural network to build five-layer fuzzy neural network, taking T-S fuzzy reasoning model as an interference layer in network, then regarding the purified and optimized fault characteristic quantity preprocessed by wavelet transform as the input of fuzzy neural network, regarding fault type as output to train and learn the fuzzy neural network to further realize the way of recognition of fault type. Finally, simulation testing shows this way can effectively realize the recognition of fault type, strongly enhancing the recognition rate of fault types.</description><subject>小波变换</subject><subject>序电流分量</subject><subject>故障类型</subject><subject>模糊推理模型</subject><subject>模糊神经网络</subject><subject>模糊集理论</subject><subject>识别率</subject><subject>输电线路</subject><issn>1548-7709</issn><issn>1930-1553</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNis0KgkAURocoyH7eYXoAYWScJrdF0iJaxEDtZNCrTuiMeS3w7VNo067V9x3OmRAviDjzAyH4dPgi3PlSsmhOFogPxoRkXHrkrkqgV0hdYU1nnKUup7F-VR1VfQMjqVZbrA3iaM_GAt1rhIwOdNNvqKD7TbTNaHy5rMgs1xXC-rtLsomP6nDy09LZ4mlskTStqXXbJ6Hc8lCIgP_TfAAo80Ea</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Li-Zhang Shun Ling-Chen Qiao Zhi-Wang Shun-Lv Yang He-Liu</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope></search><sort><creationdate>2013</creationdate><title>The Recognition of Fault Type of Transmission Line Based on Wavelet Transmission and FNN</title><author>Li-Zhang Shun Ling-Chen Qiao Zhi-Wang Shun-Lv Yang He-Liu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-chongqing_primary_476345513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>小波变换</topic><topic>序电流分量</topic><topic>故障类型</topic><topic>模糊推理模型</topic><topic>模糊神经网络</topic><topic>模糊集理论</topic><topic>识别率</topic><topic>输电线路</topic><toplevel>online_resources</toplevel><creatorcontrib>Li-Zhang Shun Ling-Chen Qiao Zhi-Wang Shun-Lv Yang He-Liu</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><jtitle>通讯和计算机:中英文版</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li-Zhang Shun Ling-Chen Qiao Zhi-Wang Shun-Lv Yang He-Liu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Recognition of Fault Type of Transmission Line Based on Wavelet Transmission and FNN</atitle><jtitle>通讯和计算机:中英文版</jtitle><addtitle>Journal of Communication and Computer</addtitle><date>2013</date><risdate>2013</risdate><volume>10</volume><issue>5</issue><spage>724</spage><epage>729</epage><pages>724-729</pages><issn>1548-7709</issn><eissn>1930-1553</eissn><abstract>The article firstly utilizes wavelet transform to do denoising, filtering and other preprocessing to the information collected and realizing the purification of three-phase component and zero sequence current component which used for determining the ground fault, then using the effective combination between fuzzy set theory and neural network to build five-layer fuzzy neural network, taking T-S fuzzy reasoning model as an interference layer in network, then regarding the purified and optimized fault characteristic quantity preprocessed by wavelet transform as the input of fuzzy neural network, regarding fault type as output to train and learn the fuzzy neural network to further realize the way of recognition of fault type. Finally, simulation testing shows this way can effectively realize the recognition of fault type, strongly enhancing the recognition rate of fault types.</abstract></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1548-7709 |
ispartof | 通讯和计算机:中英文版, 2013, Vol.10 (5), p.724-729 |
issn | 1548-7709 1930-1553 |
language | eng |
recordid | cdi_chongqing_primary_47634551 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | 小波变换 序电流分量 故障类型 模糊推理模型 模糊神经网络 模糊集理论 识别率 输电线路 |
title | The Recognition of Fault Type of Transmission Line Based on Wavelet Transmission and FNN |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T11%3A56%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-chongqing&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Recognition%20of%20Fault%20Type%20of%20Transmission%20Line%20Based%20on%20Wavelet%20Transmission%20and%20FNN&rft.jtitle=%E9%80%9A%E8%AE%AF%E5%92%8C%E8%AE%A1%E7%AE%97%E6%9C%BA%EF%BC%9A%E4%B8%AD%E8%8B%B1%E6%96%87%E7%89%88&rft.au=Li-Zhang%20Shun%20Ling-Chen%20Qiao%20Zhi-Wang%20Shun-Lv%20Yang%20He-Liu&rft.date=2013&rft.volume=10&rft.issue=5&rft.spage=724&rft.epage=729&rft.pages=724-729&rft.issn=1548-7709&rft.eissn=1930-1553&rft_id=info:doi/&rft_dat=%3Cchongqing%3E47634551%3C/chongqing%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=47634551&rfr_iscdi=true |