The Recognition of Fault Type of Transmission Line Based on Wavelet Transmission and FNN

The article firstly utilizes wavelet transform to do denoising, filtering and other preprocessing to the information collected and realizing the purification of three-phase component and zero sequence current component which used for determining the ground fault, then using the effective combination...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:通讯和计算机:中英文版 2013, Vol.10 (5), p.724-729
1. Verfasser: Li-Zhang Shun Ling-Chen Qiao Zhi-Wang Shun-Lv Yang He-Liu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 729
container_issue 5
container_start_page 724
container_title 通讯和计算机:中英文版
container_volume 10
creator Li-Zhang Shun Ling-Chen Qiao Zhi-Wang Shun-Lv Yang He-Liu
description The article firstly utilizes wavelet transform to do denoising, filtering and other preprocessing to the information collected and realizing the purification of three-phase component and zero sequence current component which used for determining the ground fault, then using the effective combination between fuzzy set theory and neural network to build five-layer fuzzy neural network, taking T-S fuzzy reasoning model as an interference layer in network, then regarding the purified and optimized fault characteristic quantity preprocessed by wavelet transform as the input of fuzzy neural network, regarding fault type as output to train and learn the fuzzy neural network to further realize the way of recognition of fault type. Finally, simulation testing shows this way can effectively realize the recognition of fault type, strongly enhancing the recognition rate of fault types.
format Article
fullrecord <record><control><sourceid>chongqing</sourceid><recordid>TN_cdi_chongqing_primary_47634551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>47634551</cqvip_id><sourcerecordid>47634551</sourcerecordid><originalsourceid>FETCH-chongqing_primary_476345513</originalsourceid><addsrcrecordid>eNqNis0KgkAURocoyH7eYXoAYWScJrdF0iJaxEDtZNCrTuiMeS3w7VNo067V9x3OmRAviDjzAyH4dPgi3PlSsmhOFogPxoRkXHrkrkqgV0hdYU1nnKUup7F-VR1VfQMjqVZbrA3iaM_GAt1rhIwOdNNvqKD7TbTNaHy5rMgs1xXC-rtLsomP6nDy09LZ4mlskTStqXXbJ6Hc8lCIgP_TfAAo80Ea</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Recognition of Fault Type of Transmission Line Based on Wavelet Transmission and FNN</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Li-Zhang Shun Ling-Chen Qiao Zhi-Wang Shun-Lv Yang He-Liu</creator><creatorcontrib>Li-Zhang Shun Ling-Chen Qiao Zhi-Wang Shun-Lv Yang He-Liu</creatorcontrib><description>The article firstly utilizes wavelet transform to do denoising, filtering and other preprocessing to the information collected and realizing the purification of three-phase component and zero sequence current component which used for determining the ground fault, then using the effective combination between fuzzy set theory and neural network to build five-layer fuzzy neural network, taking T-S fuzzy reasoning model as an interference layer in network, then regarding the purified and optimized fault characteristic quantity preprocessed by wavelet transform as the input of fuzzy neural network, regarding fault type as output to train and learn the fuzzy neural network to further realize the way of recognition of fault type. Finally, simulation testing shows this way can effectively realize the recognition of fault type, strongly enhancing the recognition rate of fault types.</description><identifier>ISSN: 1548-7709</identifier><identifier>EISSN: 1930-1553</identifier><language>eng</language><subject>小波变换 ; 序电流分量 ; 故障类型 ; 模糊推理模型 ; 模糊神经网络 ; 模糊集理论 ; 识别率 ; 输电线路</subject><ispartof>通讯和计算机:中英文版, 2013, Vol.10 (5), p.724-729</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/88584X/88584X.jpg</thumbnail><link.rule.ids>315,781,785,4025</link.rule.ids></links><search><creatorcontrib>Li-Zhang Shun Ling-Chen Qiao Zhi-Wang Shun-Lv Yang He-Liu</creatorcontrib><title>The Recognition of Fault Type of Transmission Line Based on Wavelet Transmission and FNN</title><title>通讯和计算机:中英文版</title><addtitle>Journal of Communication and Computer</addtitle><description>The article firstly utilizes wavelet transform to do denoising, filtering and other preprocessing to the information collected and realizing the purification of three-phase component and zero sequence current component which used for determining the ground fault, then using the effective combination between fuzzy set theory and neural network to build five-layer fuzzy neural network, taking T-S fuzzy reasoning model as an interference layer in network, then regarding the purified and optimized fault characteristic quantity preprocessed by wavelet transform as the input of fuzzy neural network, regarding fault type as output to train and learn the fuzzy neural network to further realize the way of recognition of fault type. Finally, simulation testing shows this way can effectively realize the recognition of fault type, strongly enhancing the recognition rate of fault types.</description><subject>小波变换</subject><subject>序电流分量</subject><subject>故障类型</subject><subject>模糊推理模型</subject><subject>模糊神经网络</subject><subject>模糊集理论</subject><subject>识别率</subject><subject>输电线路</subject><issn>1548-7709</issn><issn>1930-1553</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNis0KgkAURocoyH7eYXoAYWScJrdF0iJaxEDtZNCrTuiMeS3w7VNo067V9x3OmRAviDjzAyH4dPgi3PlSsmhOFogPxoRkXHrkrkqgV0hdYU1nnKUup7F-VR1VfQMjqVZbrA3iaM_GAt1rhIwOdNNvqKD7TbTNaHy5rMgs1xXC-rtLsomP6nDy09LZ4mlskTStqXXbJ6Hc8lCIgP_TfAAo80Ea</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Li-Zhang Shun Ling-Chen Qiao Zhi-Wang Shun-Lv Yang He-Liu</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope></search><sort><creationdate>2013</creationdate><title>The Recognition of Fault Type of Transmission Line Based on Wavelet Transmission and FNN</title><author>Li-Zhang Shun Ling-Chen Qiao Zhi-Wang Shun-Lv Yang He-Liu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-chongqing_primary_476345513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>小波变换</topic><topic>序电流分量</topic><topic>故障类型</topic><topic>模糊推理模型</topic><topic>模糊神经网络</topic><topic>模糊集理论</topic><topic>识别率</topic><topic>输电线路</topic><toplevel>online_resources</toplevel><creatorcontrib>Li-Zhang Shun Ling-Chen Qiao Zhi-Wang Shun-Lv Yang He-Liu</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><jtitle>通讯和计算机:中英文版</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li-Zhang Shun Ling-Chen Qiao Zhi-Wang Shun-Lv Yang He-Liu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Recognition of Fault Type of Transmission Line Based on Wavelet Transmission and FNN</atitle><jtitle>通讯和计算机:中英文版</jtitle><addtitle>Journal of Communication and Computer</addtitle><date>2013</date><risdate>2013</risdate><volume>10</volume><issue>5</issue><spage>724</spage><epage>729</epage><pages>724-729</pages><issn>1548-7709</issn><eissn>1930-1553</eissn><abstract>The article firstly utilizes wavelet transform to do denoising, filtering and other preprocessing to the information collected and realizing the purification of three-phase component and zero sequence current component which used for determining the ground fault, then using the effective combination between fuzzy set theory and neural network to build five-layer fuzzy neural network, taking T-S fuzzy reasoning model as an interference layer in network, then regarding the purified and optimized fault characteristic quantity preprocessed by wavelet transform as the input of fuzzy neural network, regarding fault type as output to train and learn the fuzzy neural network to further realize the way of recognition of fault type. Finally, simulation testing shows this way can effectively realize the recognition of fault type, strongly enhancing the recognition rate of fault types.</abstract></addata></record>
fulltext fulltext
identifier ISSN: 1548-7709
ispartof 通讯和计算机:中英文版, 2013, Vol.10 (5), p.724-729
issn 1548-7709
1930-1553
language eng
recordid cdi_chongqing_primary_47634551
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects 小波变换
序电流分量
故障类型
模糊推理模型
模糊神经网络
模糊集理论
识别率
输电线路
title The Recognition of Fault Type of Transmission Line Based on Wavelet Transmission and FNN
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T11%3A56%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-chongqing&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Recognition%20of%20Fault%20Type%20of%20Transmission%20Line%20Based%20on%20Wavelet%20Transmission%20and%20FNN&rft.jtitle=%E9%80%9A%E8%AE%AF%E5%92%8C%E8%AE%A1%E7%AE%97%E6%9C%BA%EF%BC%9A%E4%B8%AD%E8%8B%B1%E6%96%87%E7%89%88&rft.au=Li-Zhang%20Shun%20Ling-Chen%20Qiao%20Zhi-Wang%20Shun-Lv%20Yang%20He-Liu&rft.date=2013&rft.volume=10&rft.issue=5&rft.spage=724&rft.epage=729&rft.pages=724-729&rft.issn=1548-7709&rft.eissn=1930-1553&rft_id=info:doi/&rft_dat=%3Cchongqing%3E47634551%3C/chongqing%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=47634551&rfr_iscdi=true