MULTIPLE KERNEL RELEVANCE VECTOR MACHINE FOR GEOSPATIAL OBJECTS DETECTION IN HIGH-RESOLUTION REMOTE SENSING IMAGES1
Geospatial objects detection within complex environment is a challenging problem in re- mote sensing area. In this paper, we derive an extension of the Relevance Vector Machine (RVM) technique to multiple kernel version. The proposed method learns an optimal kernel combination and the associated cla...
Gespeichert in:
Veröffentlicht in: | 电子科学学刊:英文版 2012, Vol.29 (5), p.353-360 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 360 |
---|---|
container_issue | 5 |
container_start_page | 353 |
container_title | 电子科学学刊:英文版 |
container_volume | 29 |
creator | Li Xiangjuan Sun Xian Wang Hongqi LiYu Sun Hao |
description | Geospatial objects detection within complex environment is a challenging problem in re- mote sensing area. In this paper, we derive an extension of the Relevance Vector Machine (RVM) technique to multiple kernel version. The proposed method learns an optimal kernel combination and the associated classifier simultaneously. Two feature types are extracted from images, forming basis kernels. Then these basis kernels are weighted combined and resulted the composite kernel exploits interesting points and appearance information of objects simultaneously. Weights and the detection model are finally learnt by a new algorithm. Experimental results show that the proposed method improve detection accuracy to above 88%, yields good interpretation for the selected subset of features and appears sparser than traditional single-kernel RVMs. |
format | Article |
fullrecord | <record><control><sourceid>chongqing</sourceid><recordid>TN_cdi_chongqing_primary_43213418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>43213418</cqvip_id><sourcerecordid>43213418</sourcerecordid><originalsourceid>FETCH-chongqing_primary_432134183</originalsourceid><addsrcrecordid>eNqNiktuwjAURS0EEuGzh9cFRLJjAsnQTR-JwbGRbTKNEOIrCpSMunsixAIYnatzT4cELE15SKcs7pKARmwWpkkU9cmgac6UxjyJaUCacq28XCmEJVqNCiwqrITOECrMvLFQiqyQGmHe7hyNWwkvhQLzvWh_Bz_oW0qjQWooZF6EFp1R65eyWBqP4FA7qXOQpcjRsRHp7TeXZjd-c0i-5uizItweb9fD3-l6qO-P0-_m8V9PeMT4hCX8k-YJY_lAtQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>MULTIPLE KERNEL RELEVANCE VECTOR MACHINE FOR GEOSPATIAL OBJECTS DETECTION IN HIGH-RESOLUTION REMOTE SENSING IMAGES1</title><source>Alma/SFX Local Collection</source><creator>Li Xiangjuan Sun Xian Wang Hongqi LiYu Sun Hao</creator><creatorcontrib>Li Xiangjuan Sun Xian Wang Hongqi LiYu Sun Hao</creatorcontrib><description>Geospatial objects detection within complex environment is a challenging problem in re- mote sensing area. In this paper, we derive an extension of the Relevance Vector Machine (RVM) technique to multiple kernel version. The proposed method learns an optimal kernel combination and the associated classifier simultaneously. Two feature types are extracted from images, forming basis kernels. Then these basis kernels are weighted combined and resulted the composite kernel exploits interesting points and appearance information of objects simultaneously. Weights and the detection model are finally learnt by a new algorithm. Experimental results show that the proposed method improve detection accuracy to above 88%, yields good interpretation for the selected subset of features and appears sparser than traditional single-kernel RVMs.</description><identifier>ISSN: 0217-9822</identifier><identifier>EISSN: 1993-0615</identifier><language>eng</language><ispartof>电子科学学刊:英文版, 2012, Vol.29 (5), p.353-360</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85266X/85266X.jpg</thumbnail><link.rule.ids>314,776,780,4009</link.rule.ids></links><search><creatorcontrib>Li Xiangjuan Sun Xian Wang Hongqi LiYu Sun Hao</creatorcontrib><title>MULTIPLE KERNEL RELEVANCE VECTOR MACHINE FOR GEOSPATIAL OBJECTS DETECTION IN HIGH-RESOLUTION REMOTE SENSING IMAGES1</title><title>电子科学学刊:英文版</title><addtitle>Journal of Electronics</addtitle><description>Geospatial objects detection within complex environment is a challenging problem in re- mote sensing area. In this paper, we derive an extension of the Relevance Vector Machine (RVM) technique to multiple kernel version. The proposed method learns an optimal kernel combination and the associated classifier simultaneously. Two feature types are extracted from images, forming basis kernels. Then these basis kernels are weighted combined and resulted the composite kernel exploits interesting points and appearance information of objects simultaneously. Weights and the detection model are finally learnt by a new algorithm. Experimental results show that the proposed method improve detection accuracy to above 88%, yields good interpretation for the selected subset of features and appears sparser than traditional single-kernel RVMs.</description><issn>0217-9822</issn><issn>1993-0615</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNiktuwjAURS0EEuGzh9cFRLJjAsnQTR-JwbGRbTKNEOIrCpSMunsixAIYnatzT4cELE15SKcs7pKARmwWpkkU9cmgac6UxjyJaUCacq28XCmEJVqNCiwqrITOECrMvLFQiqyQGmHe7hyNWwkvhQLzvWh_Bz_oW0qjQWooZF6EFp1R65eyWBqP4FA7qXOQpcjRsRHp7TeXZjd-c0i-5uizItweb9fD3-l6qO-P0-_m8V9PeMT4hCX8k-YJY_lAtQ</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Li Xiangjuan Sun Xian Wang Hongqi LiYu Sun Hao</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope></search><sort><creationdate>2012</creationdate><title>MULTIPLE KERNEL RELEVANCE VECTOR MACHINE FOR GEOSPATIAL OBJECTS DETECTION IN HIGH-RESOLUTION REMOTE SENSING IMAGES1</title><author>Li Xiangjuan Sun Xian Wang Hongqi LiYu Sun Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-chongqing_primary_432134183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li Xiangjuan Sun Xian Wang Hongqi LiYu Sun Hao</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><jtitle>电子科学学刊:英文版</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li Xiangjuan Sun Xian Wang Hongqi LiYu Sun Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MULTIPLE KERNEL RELEVANCE VECTOR MACHINE FOR GEOSPATIAL OBJECTS DETECTION IN HIGH-RESOLUTION REMOTE SENSING IMAGES1</atitle><jtitle>电子科学学刊:英文版</jtitle><addtitle>Journal of Electronics</addtitle><date>2012</date><risdate>2012</risdate><volume>29</volume><issue>5</issue><spage>353</spage><epage>360</epage><pages>353-360</pages><issn>0217-9822</issn><eissn>1993-0615</eissn><abstract>Geospatial objects detection within complex environment is a challenging problem in re- mote sensing area. In this paper, we derive an extension of the Relevance Vector Machine (RVM) technique to multiple kernel version. The proposed method learns an optimal kernel combination and the associated classifier simultaneously. Two feature types are extracted from images, forming basis kernels. Then these basis kernels are weighted combined and resulted the composite kernel exploits interesting points and appearance information of objects simultaneously. Weights and the detection model are finally learnt by a new algorithm. Experimental results show that the proposed method improve detection accuracy to above 88%, yields good interpretation for the selected subset of features and appears sparser than traditional single-kernel RVMs.</abstract></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0217-9822 |
ispartof | 电子科学学刊:英文版, 2012, Vol.29 (5), p.353-360 |
issn | 0217-9822 1993-0615 |
language | eng |
recordid | cdi_chongqing_primary_43213418 |
source | Alma/SFX Local Collection |
title | MULTIPLE KERNEL RELEVANCE VECTOR MACHINE FOR GEOSPATIAL OBJECTS DETECTION IN HIGH-RESOLUTION REMOTE SENSING IMAGES1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T11%3A07%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-chongqing&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MULTIPLE%20KERNEL%20RELEVANCE%20VECTOR%20MACHINE%20FOR%20GEOSPATIAL%20OBJECTS%20DETECTION%20IN%20HIGH-RESOLUTION%20REMOTE%20SENSING%20IMAGES1&rft.jtitle=%E7%94%B5%E5%AD%90%E7%A7%91%E5%AD%A6%E5%AD%A6%E5%88%8A%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=Li%20Xiangjuan%20Sun%20Xian%20Wang%20Hongqi%20LiYu%20Sun%20Hao&rft.date=2012&rft.volume=29&rft.issue=5&rft.spage=353&rft.epage=360&rft.pages=353-360&rft.issn=0217-9822&rft.eissn=1993-0615&rft_id=info:doi/&rft_dat=%3Cchongqing%3E43213418%3C/chongqing%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=43213418&rfr_iscdi=true |