NUMERICAL SIMULATION OF BENARD CONVECTION IN A CLOSED RECTANGLE (Ⅰ)——TWO-DIMENSIONAL CASE

In the paper, a finite differential numerical model is proposed for Benard convection ina non-slippery closed rectangle. By this model, we have discussed the bifurcation character-istics of two-dimensional Benard convection when Prandtl number is 1. The computed re-sults show that if the Rayleigh nu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:中国科学:化学英文版 1991 (6), p.719-731
1. Verfasser: 杨硕文 周秀骥 杨培才
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 731
container_issue 6
container_start_page 719
container_title 中国科学:化学英文版
container_volume
creator 杨硕文 周秀骥 杨培才
description In the paper, a finite differential numerical model is proposed for Benard convection ina non-slippery closed rectangle. By this model, we have discussed the bifurcation character-istics of two-dimensional Benard convection when Prandtl number is 1. The computed re-sults show that if the Rayleigh number Ra≥1.75×10~5, the Benard convection is unsteady andirregular, and that in the transient region of flow pattern, the changing rate of the Nusseltnumber Nu to Ra, dlgNu/dlgRa, is rather smaller than that in the non-transient region.Moreover, in the paper, we have analysed the relation between the shrinking rate of thephase flow and each term in the governing equations of Benard convection. And further,we have developed a new method to calculate the pressure gradient.
format Article
fullrecord <record><control><sourceid>chongqing</sourceid><recordid>TN_cdi_chongqing_primary_1005239932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>1005239932</cqvip_id><sourcerecordid>1005239932</sourcerecordid><originalsourceid>FETCH-chongqing_primary_10052399323</originalsourceid><addsrcrecordid>eNpjYuA0tDCz1DW0MDdgAbLNzE10zY0sDTkYeIuLswyAwNjYwMjclJMh3i_U1zXI09nRRyHY0zfUxzHE099Pwd9NwcnVzzHIRcHZ3y_M1Rks6Omn4Kjg7OMf7OqiEAQUc_Rz93FV0HjUukDzUcMUIAoJ99d18fR19QsGKgca6OwY7MrDwJqWmFOcyguluRmU3VxDnD10kzPy89ILM_PS4wuKMnMTiyrjDQ0MTI2MLS2NjYyJUwUAfYI_rQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>NUMERICAL SIMULATION OF BENARD CONVECTION IN A CLOSED RECTANGLE (Ⅰ)——TWO-DIMENSIONAL CASE</title><source>Alma/SFX Local Collection</source><creator>杨硕文 周秀骥 杨培才</creator><creatorcontrib>杨硕文 周秀骥 杨培才</creatorcontrib><description>In the paper, a finite differential numerical model is proposed for Benard convection ina non-slippery closed rectangle. By this model, we have discussed the bifurcation character-istics of two-dimensional Benard convection when Prandtl number is 1. The computed re-sults show that if the Rayleigh number Ra≥1.75×10~5, the Benard convection is unsteady andirregular, and that in the transient region of flow pattern, the changing rate of the Nusseltnumber Nu to Ra, dlgNu/dlgRa, is rather smaller than that in the non-transient region.Moreover, in the paper, we have analysed the relation between the shrinking rate of thephase flow and each term in the governing equations of Benard convection. And further,we have developed a new method to calculate the pressure gradient.</description><identifier>ISSN: 1674-7291</identifier><identifier>EISSN: 1869-1870</identifier><language>eng</language><subject>Benard ; convection ; flow ; phase ; Pr=1 ; pressure</subject><ispartof>中国科学:化学英文版, 1991 (6), p.719-731</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/60113X/60113X.jpg</thumbnail><link.rule.ids>314,780,784,4024</link.rule.ids></links><search><creatorcontrib>杨硕文 周秀骥 杨培才</creatorcontrib><title>NUMERICAL SIMULATION OF BENARD CONVECTION IN A CLOSED RECTANGLE (Ⅰ)——TWO-DIMENSIONAL CASE</title><title>中国科学:化学英文版</title><addtitle>SCIENCE CHINA Chemistry</addtitle><description>In the paper, a finite differential numerical model is proposed for Benard convection ina non-slippery closed rectangle. By this model, we have discussed the bifurcation character-istics of two-dimensional Benard convection when Prandtl number is 1. The computed re-sults show that if the Rayleigh number Ra≥1.75×10~5, the Benard convection is unsteady andirregular, and that in the transient region of flow pattern, the changing rate of the Nusseltnumber Nu to Ra, dlgNu/dlgRa, is rather smaller than that in the non-transient region.Moreover, in the paper, we have analysed the relation between the shrinking rate of thephase flow and each term in the governing equations of Benard convection. And further,we have developed a new method to calculate the pressure gradient.</description><subject>Benard</subject><subject>convection</subject><subject>flow</subject><subject>phase</subject><subject>Pr=1</subject><subject>pressure</subject><issn>1674-7291</issn><issn>1869-1870</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNpjYuA0tDCz1DW0MDdgAbLNzE10zY0sDTkYeIuLswyAwNjYwMjclJMh3i_U1zXI09nRRyHY0zfUxzHE099Pwd9NwcnVzzHIRcHZ3y_M1Rks6Omn4Kjg7OMf7OqiEAQUc_Rz93FV0HjUukDzUcMUIAoJ99d18fR19QsGKgca6OwY7MrDwJqWmFOcyguluRmU3VxDnD10kzPy89ILM_PS4wuKMnMTiyrjDQ0MTI2MLS2NjYyJUwUAfYI_rQ</recordid><startdate>1991</startdate><enddate>1991</enddate><creator>杨硕文 周秀骥 杨培才</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W94</scope><scope>~WA</scope></search><sort><creationdate>1991</creationdate><title>NUMERICAL SIMULATION OF BENARD CONVECTION IN A CLOSED RECTANGLE (Ⅰ)——TWO-DIMENSIONAL CASE</title><author>杨硕文 周秀骥 杨培才</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-chongqing_primary_10052399323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Benard</topic><topic>convection</topic><topic>flow</topic><topic>phase</topic><topic>Pr=1</topic><topic>pressure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>杨硕文 周秀骥 杨培才</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-自然科学</collection><collection>中文科技期刊数据库- 镜像站点</collection><jtitle>中国科学:化学英文版</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>杨硕文 周秀骥 杨培才</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NUMERICAL SIMULATION OF BENARD CONVECTION IN A CLOSED RECTANGLE (Ⅰ)——TWO-DIMENSIONAL CASE</atitle><jtitle>中国科学:化学英文版</jtitle><addtitle>SCIENCE CHINA Chemistry</addtitle><date>1991</date><risdate>1991</risdate><issue>6</issue><spage>719</spage><epage>731</epage><pages>719-731</pages><issn>1674-7291</issn><eissn>1869-1870</eissn><abstract>In the paper, a finite differential numerical model is proposed for Benard convection ina non-slippery closed rectangle. By this model, we have discussed the bifurcation character-istics of two-dimensional Benard convection when Prandtl number is 1. The computed re-sults show that if the Rayleigh number Ra≥1.75×10~5, the Benard convection is unsteady andirregular, and that in the transient region of flow pattern, the changing rate of the Nusseltnumber Nu to Ra, dlgNu/dlgRa, is rather smaller than that in the non-transient region.Moreover, in the paper, we have analysed the relation between the shrinking rate of thephase flow and each term in the governing equations of Benard convection. And further,we have developed a new method to calculate the pressure gradient.</abstract></addata></record>
fulltext fulltext
identifier ISSN: 1674-7291
ispartof 中国科学:化学英文版, 1991 (6), p.719-731
issn 1674-7291
1869-1870
language eng
recordid cdi_chongqing_primary_1005239932
source Alma/SFX Local Collection
subjects Benard
convection
flow
phase
Pr=1
pressure
title NUMERICAL SIMULATION OF BENARD CONVECTION IN A CLOSED RECTANGLE (Ⅰ)——TWO-DIMENSIONAL CASE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T06%3A45%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-chongqing&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NUMERICAL%20SIMULATION%20OF%20BENARD%20CONVECTION%20IN%20A%20CLOSED%20RECTANGLE%20(%E2%85%A0)%E2%80%94%E2%80%94TWO-DIMENSIONAL%20CASE&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%A7%91%E5%AD%A6%EF%BC%9A%E5%8C%96%E5%AD%A6%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E6%9D%A8%E7%A1%95%E6%96%87%20%E5%91%A8%E7%A7%80%E9%AA%A5%20%E6%9D%A8%E5%9F%B9%E6%89%8D&rft.date=1991&rft.issue=6&rft.spage=719&rft.epage=731&rft.pages=719-731&rft.issn=1674-7291&rft.eissn=1869-1870&rft_id=info:doi/&rft_dat=%3Cchongqing%3E1005239932%3C/chongqing%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=1005239932&rfr_iscdi=true