NUMERICAL SIMULATION OF BENARD CONVECTION IN A CLOSED RECTANGLE (Ⅰ)——TWO-DIMENSIONAL CASE
In the paper, a finite differential numerical model is proposed for Benard convection ina non-slippery closed rectangle. By this model, we have discussed the bifurcation character-istics of two-dimensional Benard convection when Prandtl number is 1. The computed re-sults show that if the Rayleigh nu...
Gespeichert in:
Veröffentlicht in: | 中国科学:化学英文版 1991 (6), p.719-731 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 731 |
---|---|
container_issue | 6 |
container_start_page | 719 |
container_title | 中国科学:化学英文版 |
container_volume | |
creator | 杨硕文 周秀骥 杨培才 |
description | In the paper, a finite differential numerical model is proposed for Benard convection ina non-slippery closed rectangle. By this model, we have discussed the bifurcation character-istics of two-dimensional Benard convection when Prandtl number is 1. The computed re-sults show that if the Rayleigh number Ra≥1.75×10~5, the Benard convection is unsteady andirregular, and that in the transient region of flow pattern, the changing rate of the Nusseltnumber Nu to Ra, dlgNu/dlgRa, is rather smaller than that in the non-transient region.Moreover, in the paper, we have analysed the relation between the shrinking rate of thephase flow and each term in the governing equations of Benard convection. And further,we have developed a new method to calculate the pressure gradient. |
format | Article |
fullrecord | <record><control><sourceid>chongqing</sourceid><recordid>TN_cdi_chongqing_primary_1005239932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>1005239932</cqvip_id><sourcerecordid>1005239932</sourcerecordid><originalsourceid>FETCH-chongqing_primary_10052399323</originalsourceid><addsrcrecordid>eNpjYuA0tDCz1DW0MDdgAbLNzE10zY0sDTkYeIuLswyAwNjYwMjclJMh3i_U1zXI09nRRyHY0zfUxzHE099Pwd9NwcnVzzHIRcHZ3y_M1Rks6Omn4Kjg7OMf7OqiEAQUc_Rz93FV0HjUukDzUcMUIAoJ99d18fR19QsGKgca6OwY7MrDwJqWmFOcyguluRmU3VxDnD10kzPy89ILM_PS4wuKMnMTiyrjDQ0MTI2MLS2NjYyJUwUAfYI_rQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>NUMERICAL SIMULATION OF BENARD CONVECTION IN A CLOSED RECTANGLE (Ⅰ)——TWO-DIMENSIONAL CASE</title><source>Alma/SFX Local Collection</source><creator>杨硕文 周秀骥 杨培才</creator><creatorcontrib>杨硕文 周秀骥 杨培才</creatorcontrib><description>In the paper, a finite differential numerical model is proposed for Benard convection ina non-slippery closed rectangle. By this model, we have discussed the bifurcation character-istics of two-dimensional Benard convection when Prandtl number is 1. The computed re-sults show that if the Rayleigh number Ra≥1.75×10~5, the Benard convection is unsteady andirregular, and that in the transient region of flow pattern, the changing rate of the Nusseltnumber Nu to Ra, dlgNu/dlgRa, is rather smaller than that in the non-transient region.Moreover, in the paper, we have analysed the relation between the shrinking rate of thephase flow and each term in the governing equations of Benard convection. And further,we have developed a new method to calculate the pressure gradient.</description><identifier>ISSN: 1674-7291</identifier><identifier>EISSN: 1869-1870</identifier><language>eng</language><subject>Benard ; convection ; flow ; phase ; Pr=1 ; pressure</subject><ispartof>中国科学:化学英文版, 1991 (6), p.719-731</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/60113X/60113X.jpg</thumbnail><link.rule.ids>314,780,784,4024</link.rule.ids></links><search><creatorcontrib>杨硕文 周秀骥 杨培才</creatorcontrib><title>NUMERICAL SIMULATION OF BENARD CONVECTION IN A CLOSED RECTANGLE (Ⅰ)——TWO-DIMENSIONAL CASE</title><title>中国科学:化学英文版</title><addtitle>SCIENCE CHINA Chemistry</addtitle><description>In the paper, a finite differential numerical model is proposed for Benard convection ina non-slippery closed rectangle. By this model, we have discussed the bifurcation character-istics of two-dimensional Benard convection when Prandtl number is 1. The computed re-sults show that if the Rayleigh number Ra≥1.75×10~5, the Benard convection is unsteady andirregular, and that in the transient region of flow pattern, the changing rate of the Nusseltnumber Nu to Ra, dlgNu/dlgRa, is rather smaller than that in the non-transient region.Moreover, in the paper, we have analysed the relation between the shrinking rate of thephase flow and each term in the governing equations of Benard convection. And further,we have developed a new method to calculate the pressure gradient.</description><subject>Benard</subject><subject>convection</subject><subject>flow</subject><subject>phase</subject><subject>Pr=1</subject><subject>pressure</subject><issn>1674-7291</issn><issn>1869-1870</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNpjYuA0tDCz1DW0MDdgAbLNzE10zY0sDTkYeIuLswyAwNjYwMjclJMh3i_U1zXI09nRRyHY0zfUxzHE099Pwd9NwcnVzzHIRcHZ3y_M1Rks6Omn4Kjg7OMf7OqiEAQUc_Rz93FV0HjUukDzUcMUIAoJ99d18fR19QsGKgca6OwY7MrDwJqWmFOcyguluRmU3VxDnD10kzPy89ILM_PS4wuKMnMTiyrjDQ0MTI2MLS2NjYyJUwUAfYI_rQ</recordid><startdate>1991</startdate><enddate>1991</enddate><creator>杨硕文 周秀骥 杨培才</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W94</scope><scope>~WA</scope></search><sort><creationdate>1991</creationdate><title>NUMERICAL SIMULATION OF BENARD CONVECTION IN A CLOSED RECTANGLE (Ⅰ)——TWO-DIMENSIONAL CASE</title><author>杨硕文 周秀骥 杨培才</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-chongqing_primary_10052399323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Benard</topic><topic>convection</topic><topic>flow</topic><topic>phase</topic><topic>Pr=1</topic><topic>pressure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>杨硕文 周秀骥 杨培才</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-自然科学</collection><collection>中文科技期刊数据库- 镜像站点</collection><jtitle>中国科学:化学英文版</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>杨硕文 周秀骥 杨培才</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NUMERICAL SIMULATION OF BENARD CONVECTION IN A CLOSED RECTANGLE (Ⅰ)——TWO-DIMENSIONAL CASE</atitle><jtitle>中国科学:化学英文版</jtitle><addtitle>SCIENCE CHINA Chemistry</addtitle><date>1991</date><risdate>1991</risdate><issue>6</issue><spage>719</spage><epage>731</epage><pages>719-731</pages><issn>1674-7291</issn><eissn>1869-1870</eissn><abstract>In the paper, a finite differential numerical model is proposed for Benard convection ina non-slippery closed rectangle. By this model, we have discussed the bifurcation character-istics of two-dimensional Benard convection when Prandtl number is 1. The computed re-sults show that if the Rayleigh number Ra≥1.75×10~5, the Benard convection is unsteady andirregular, and that in the transient region of flow pattern, the changing rate of the Nusseltnumber Nu to Ra, dlgNu/dlgRa, is rather smaller than that in the non-transient region.Moreover, in the paper, we have analysed the relation between the shrinking rate of thephase flow and each term in the governing equations of Benard convection. And further,we have developed a new method to calculate the pressure gradient.</abstract></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-7291 |
ispartof | 中国科学:化学英文版, 1991 (6), p.719-731 |
issn | 1674-7291 1869-1870 |
language | eng |
recordid | cdi_chongqing_primary_1005239932 |
source | Alma/SFX Local Collection |
subjects | Benard convection flow phase Pr=1 pressure |
title | NUMERICAL SIMULATION OF BENARD CONVECTION IN A CLOSED RECTANGLE (Ⅰ)——TWO-DIMENSIONAL CASE |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T06%3A45%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-chongqing&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NUMERICAL%20SIMULATION%20OF%20BENARD%20CONVECTION%20IN%20A%20CLOSED%20RECTANGLE%20(%E2%85%A0)%E2%80%94%E2%80%94TWO-DIMENSIONAL%20CASE&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%A7%91%E5%AD%A6%EF%BC%9A%E5%8C%96%E5%AD%A6%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E6%9D%A8%E7%A1%95%E6%96%87%20%E5%91%A8%E7%A7%80%E9%AA%A5%20%E6%9D%A8%E5%9F%B9%E6%89%8D&rft.date=1991&rft.issue=6&rft.spage=719&rft.epage=731&rft.pages=719-731&rft.issn=1674-7291&rft.eissn=1869-1870&rft_id=info:doi/&rft_dat=%3Cchongqing%3E1005239932%3C/chongqing%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=1005239932&rfr_iscdi=true |