ASYMPTOTIC INERTIAL MANIFOLD OF SINE-GORDON EQUATION
The numerical results on Sine-Gordon equation show that the dynamical behaviour of this equation is determin.ed by reduced dimensionality. Some theoretic analysis is made on the basis of the fact of dynamics being determined by reduced dimensionality, but this fact has not been proved in mathematics...
Gespeichert in:
Veröffentlicht in: | 中国科学通报:英文版 1992 (22), p.1933-1934 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1934 |
---|---|
container_issue | 22 |
container_start_page | 1933 |
container_title | 中国科学通报:英文版 |
container_volume | |
creator | 徐振源 刘曾荣 |
description | The numerical results on Sine-Gordon equation show that the dynamical behaviour of this equation is determin.ed by reduced dimensionality. Some theoretic analysis is made on the basis of the fact of dynamics being determined by reduced dimensionality, but this fact has not been proved in mathematics. Ref. [2] has proved that there is a compact attractor with finite Hausdorff dimensions and Fractal dimensions in Sine-Gordon equation. The existenee of inertial manifold of this equation is not yet proved. Ref. [3] gives the proof of nonexistence of inertial manifold in Sine-Gordon equation with weak damp. In this letter, we consider the system |
format | Article |
fullrecord | <record><control><sourceid>chongqing</sourceid><recordid>TN_cdi_chongqing_primary_1005219418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>1005219418</cqvip_id><sourcerecordid>1005219418</sourcerecordid><originalsourceid>FETCH-chongqing_primary_10052194183</originalsourceid><addsrcrecordid>eNpjYeA0MrA01bU0MjfmYOAtLs4yMDAwNLE0MjEw52QwcQyO9A0I8Q_xdFbw9HMNCvF09FHwdfTzdPP3cVHwd1MIBorquvsHufj7KbgGhjqGePr78TCwpiXmFKfyQmluBmU31xBnD93kjPy89MLMvPT4gqLM3MSiynhDAwNTI0NLE0MLY-JUAQDwOy8T</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ASYMPTOTIC INERTIAL MANIFOLD OF SINE-GORDON EQUATION</title><source>Alma/SFX Local Collection</source><creator>徐振源 刘曾荣</creator><creatorcontrib>徐振源 刘曾荣</creatorcontrib><description>The numerical results on Sine-Gordon equation show that the dynamical behaviour of this equation is determin.ed by reduced dimensionality. Some theoretic analysis is made on the basis of the fact of dynamics being determined by reduced dimensionality, but this fact has not been proved in mathematics. Ref. [2] has proved that there is a compact attractor with finite Hausdorff dimensions and Fractal dimensions in Sine-Gordon equation. The existenee of inertial manifold of this equation is not yet proved. Ref. [3] gives the proof of nonexistence of inertial manifold in Sine-Gordon equation with weak damp. In this letter, we consider the system</description><identifier>ISSN: 2095-9273</identifier><language>eng</language><subject>behaviour ; dimensionality ; dimensions ; dynamical ; Fractal ; Hausdorff ; inertial ; letter ; manifold ; 比用</subject><ispartof>中国科学通报:英文版, 1992 (22), p.1933-1934</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86894X/86894X.jpg</thumbnail><link.rule.ids>314,780,784,4024</link.rule.ids></links><search><creatorcontrib>徐振源 刘曾荣</creatorcontrib><title>ASYMPTOTIC INERTIAL MANIFOLD OF SINE-GORDON EQUATION</title><title>中国科学通报:英文版</title><addtitle>Chinese Science Bulletin</addtitle><description>The numerical results on Sine-Gordon equation show that the dynamical behaviour of this equation is determin.ed by reduced dimensionality. Some theoretic analysis is made on the basis of the fact of dynamics being determined by reduced dimensionality, but this fact has not been proved in mathematics. Ref. [2] has proved that there is a compact attractor with finite Hausdorff dimensions and Fractal dimensions in Sine-Gordon equation. The existenee of inertial manifold of this equation is not yet proved. Ref. [3] gives the proof of nonexistence of inertial manifold in Sine-Gordon equation with weak damp. In this letter, we consider the system</description><subject>behaviour</subject><subject>dimensionality</subject><subject>dimensions</subject><subject>dynamical</subject><subject>Fractal</subject><subject>Hausdorff</subject><subject>inertial</subject><subject>letter</subject><subject>manifold</subject><subject>比用</subject><issn>2095-9273</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNpjYeA0MrA01bU0MjfmYOAtLs4yMDAwNLE0MjEw52QwcQyO9A0I8Q_xdFbw9HMNCvF09FHwdfTzdPP3cVHwd1MIBorquvsHufj7KbgGhjqGePr78TCwpiXmFKfyQmluBmU31xBnD93kjPy89MLMvPT4gqLM3MSiynhDAwNTI0NLE0MLY-JUAQDwOy8T</recordid><startdate>1992</startdate><enddate>1992</enddate><creator>徐振源 刘曾荣</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope></search><sort><creationdate>1992</creationdate><title>ASYMPTOTIC INERTIAL MANIFOLD OF SINE-GORDON EQUATION</title><author>徐振源 刘曾荣</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-chongqing_primary_10052194183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>behaviour</topic><topic>dimensionality</topic><topic>dimensions</topic><topic>dynamical</topic><topic>Fractal</topic><topic>Hausdorff</topic><topic>inertial</topic><topic>letter</topic><topic>manifold</topic><topic>比用</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>徐振源 刘曾荣</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><jtitle>中国科学通报:英文版</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>徐振源 刘曾荣</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ASYMPTOTIC INERTIAL MANIFOLD OF SINE-GORDON EQUATION</atitle><jtitle>中国科学通报:英文版</jtitle><addtitle>Chinese Science Bulletin</addtitle><date>1992</date><risdate>1992</risdate><issue>22</issue><spage>1933</spage><epage>1934</epage><pages>1933-1934</pages><issn>2095-9273</issn><abstract>The numerical results on Sine-Gordon equation show that the dynamical behaviour of this equation is determin.ed by reduced dimensionality. Some theoretic analysis is made on the basis of the fact of dynamics being determined by reduced dimensionality, but this fact has not been proved in mathematics. Ref. [2] has proved that there is a compact attractor with finite Hausdorff dimensions and Fractal dimensions in Sine-Gordon equation. The existenee of inertial manifold of this equation is not yet proved. Ref. [3] gives the proof of nonexistence of inertial manifold in Sine-Gordon equation with weak damp. In this letter, we consider the system</abstract></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2095-9273 |
ispartof | 中国科学通报:英文版, 1992 (22), p.1933-1934 |
issn | 2095-9273 |
language | eng |
recordid | cdi_chongqing_primary_1005219418 |
source | Alma/SFX Local Collection |
subjects | behaviour dimensionality dimensions dynamical Fractal Hausdorff inertial letter manifold 比用 |
title | ASYMPTOTIC INERTIAL MANIFOLD OF SINE-GORDON EQUATION |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A41%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-chongqing&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ASYMPTOTIC%20INERTIAL%20MANIFOLD%20OF%20SINE-GORDON%20EQUATION&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%A7%91%E5%AD%A6%E9%80%9A%E6%8A%A5%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E5%BE%90%E6%8C%AF%E6%BA%90%20%E5%88%98%E6%9B%BE%E8%8D%A3&rft.date=1992&rft.issue=22&rft.spage=1933&rft.epage=1934&rft.pages=1933-1934&rft.issn=2095-9273&rft_id=info:doi/&rft_dat=%3Cchongqing%3E1005219418%3C/chongqing%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=1005219418&rfr_iscdi=true |