ASYMPTOTIC INERTIAL MANIFOLD OF SINE-GORDON EQUATION

The numerical results on Sine-Gordon equation show that the dynamical behaviour of this equation is determin.ed by reduced dimensionality. Some theoretic analysis is made on the basis of the fact of dynamics being determined by reduced dimensionality, but this fact has not been proved in mathematics...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:中国科学通报:英文版 1992 (22), p.1933-1934
1. Verfasser: 徐振源 刘曾荣
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1934
container_issue 22
container_start_page 1933
container_title 中国科学通报:英文版
container_volume
creator 徐振源 刘曾荣
description The numerical results on Sine-Gordon equation show that the dynamical behaviour of this equation is determin.ed by reduced dimensionality. Some theoretic analysis is made on the basis of the fact of dynamics being determined by reduced dimensionality, but this fact has not been proved in mathematics. Ref. [2] has proved that there is a compact attractor with finite Hausdorff dimensions and Fractal dimensions in Sine-Gordon equation. The existenee of inertial manifold of this equation is not yet proved. Ref. [3] gives the proof of nonexistence of inertial manifold in Sine-Gordon equation with weak damp. In this letter, we consider the system
format Article
fullrecord <record><control><sourceid>chongqing</sourceid><recordid>TN_cdi_chongqing_primary_1005219418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>1005219418</cqvip_id><sourcerecordid>1005219418</sourcerecordid><originalsourceid>FETCH-chongqing_primary_10052194183</originalsourceid><addsrcrecordid>eNpjYeA0MrA01bU0MjfmYOAtLs4yMDAwNLE0MjEw52QwcQyO9A0I8Q_xdFbw9HMNCvF09FHwdfTzdPP3cVHwd1MIBorquvsHufj7KbgGhjqGePr78TCwpiXmFKfyQmluBmU31xBnD93kjPy89MLMvPT4gqLM3MSiynhDAwNTI0NLE0MLY-JUAQDwOy8T</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ASYMPTOTIC INERTIAL MANIFOLD OF SINE-GORDON EQUATION</title><source>Alma/SFX Local Collection</source><creator>徐振源 刘曾荣</creator><creatorcontrib>徐振源 刘曾荣</creatorcontrib><description>The numerical results on Sine-Gordon equation show that the dynamical behaviour of this equation is determin.ed by reduced dimensionality. Some theoretic analysis is made on the basis of the fact of dynamics being determined by reduced dimensionality, but this fact has not been proved in mathematics. Ref. [2] has proved that there is a compact attractor with finite Hausdorff dimensions and Fractal dimensions in Sine-Gordon equation. The existenee of inertial manifold of this equation is not yet proved. Ref. [3] gives the proof of nonexistence of inertial manifold in Sine-Gordon equation with weak damp. In this letter, we consider the system</description><identifier>ISSN: 2095-9273</identifier><language>eng</language><subject>behaviour ; dimensionality ; dimensions ; dynamical ; Fractal ; Hausdorff ; inertial ; letter ; manifold ; 比用</subject><ispartof>中国科学通报:英文版, 1992 (22), p.1933-1934</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86894X/86894X.jpg</thumbnail><link.rule.ids>314,780,784,4024</link.rule.ids></links><search><creatorcontrib>徐振源 刘曾荣</creatorcontrib><title>ASYMPTOTIC INERTIAL MANIFOLD OF SINE-GORDON EQUATION</title><title>中国科学通报:英文版</title><addtitle>Chinese Science Bulletin</addtitle><description>The numerical results on Sine-Gordon equation show that the dynamical behaviour of this equation is determin.ed by reduced dimensionality. Some theoretic analysis is made on the basis of the fact of dynamics being determined by reduced dimensionality, but this fact has not been proved in mathematics. Ref. [2] has proved that there is a compact attractor with finite Hausdorff dimensions and Fractal dimensions in Sine-Gordon equation. The existenee of inertial manifold of this equation is not yet proved. Ref. [3] gives the proof of nonexistence of inertial manifold in Sine-Gordon equation with weak damp. In this letter, we consider the system</description><subject>behaviour</subject><subject>dimensionality</subject><subject>dimensions</subject><subject>dynamical</subject><subject>Fractal</subject><subject>Hausdorff</subject><subject>inertial</subject><subject>letter</subject><subject>manifold</subject><subject>比用</subject><issn>2095-9273</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNpjYeA0MrA01bU0MjfmYOAtLs4yMDAwNLE0MjEw52QwcQyO9A0I8Q_xdFbw9HMNCvF09FHwdfTzdPP3cVHwd1MIBorquvsHufj7KbgGhjqGePr78TCwpiXmFKfyQmluBmU31xBnD93kjPy89MLMvPT4gqLM3MSiynhDAwNTI0NLE0MLY-JUAQDwOy8T</recordid><startdate>1992</startdate><enddate>1992</enddate><creator>徐振源 刘曾荣</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope></search><sort><creationdate>1992</creationdate><title>ASYMPTOTIC INERTIAL MANIFOLD OF SINE-GORDON EQUATION</title><author>徐振源 刘曾荣</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-chongqing_primary_10052194183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>behaviour</topic><topic>dimensionality</topic><topic>dimensions</topic><topic>dynamical</topic><topic>Fractal</topic><topic>Hausdorff</topic><topic>inertial</topic><topic>letter</topic><topic>manifold</topic><topic>比用</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>徐振源 刘曾荣</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><jtitle>中国科学通报:英文版</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>徐振源 刘曾荣</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ASYMPTOTIC INERTIAL MANIFOLD OF SINE-GORDON EQUATION</atitle><jtitle>中国科学通报:英文版</jtitle><addtitle>Chinese Science Bulletin</addtitle><date>1992</date><risdate>1992</risdate><issue>22</issue><spage>1933</spage><epage>1934</epage><pages>1933-1934</pages><issn>2095-9273</issn><abstract>The numerical results on Sine-Gordon equation show that the dynamical behaviour of this equation is determin.ed by reduced dimensionality. Some theoretic analysis is made on the basis of the fact of dynamics being determined by reduced dimensionality, but this fact has not been proved in mathematics. Ref. [2] has proved that there is a compact attractor with finite Hausdorff dimensions and Fractal dimensions in Sine-Gordon equation. The existenee of inertial manifold of this equation is not yet proved. Ref. [3] gives the proof of nonexistence of inertial manifold in Sine-Gordon equation with weak damp. In this letter, we consider the system</abstract></addata></record>
fulltext fulltext
identifier ISSN: 2095-9273
ispartof 中国科学通报:英文版, 1992 (22), p.1933-1934
issn 2095-9273
language eng
recordid cdi_chongqing_primary_1005219418
source Alma/SFX Local Collection
subjects behaviour
dimensionality
dimensions
dynamical
Fractal
Hausdorff
inertial
letter
manifold
比用
title ASYMPTOTIC INERTIAL MANIFOLD OF SINE-GORDON EQUATION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A41%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-chongqing&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ASYMPTOTIC%20INERTIAL%20MANIFOLD%20OF%20SINE-GORDON%20EQUATION&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%A7%91%E5%AD%A6%E9%80%9A%E6%8A%A5%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E5%BE%90%E6%8C%AF%E6%BA%90%20%E5%88%98%E6%9B%BE%E8%8D%A3&rft.date=1992&rft.issue=22&rft.spage=1933&rft.epage=1934&rft.pages=1933-1934&rft.issn=2095-9273&rft_id=info:doi/&rft_dat=%3Cchongqing%3E1005219418%3C/chongqing%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=1005219418&rfr_iscdi=true