Projective synchronization different fractional of a complex network with order chaos nodes
Based on the stability theory of the linear fractional order system, projective synchronization of a complex network is studied in the paper, and the coupling functions of the connected nodes are identified. With this method, the projective synchronization of the network with different fractional or...
Gespeichert in:
Veröffentlicht in: | Chinese physics B 2011, Vol.20 (1), p.224-228 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 228 |
---|---|
container_issue | 1 |
container_start_page | 224 |
container_title | Chinese physics B |
container_volume | 20 |
creator | 王明军 王兴元 牛玉军 |
description | Based on the stability theory of the linear fractional order system, projective synchronization of a complex network is studied in the paper, and the coupling functions of the connected nodes are identified. With this method, the projective synchronization of the network with different fractional order chaos nodes can be achieved, besides, the number of the nodes does not affect the stability of the whole network. In the numerical simulations, the chaotic fractional order Lu system, Liu system and Coullet system are chosen as examples to show the effectiveness of the scheme. |
format | Article |
fullrecord | <record><control><sourceid>chongqing</sourceid><recordid>TN_cdi_chongqing_backfile_36349506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>36349506</cqvip_id><sourcerecordid>36349506</sourcerecordid><originalsourceid>FETCH-chongqing_backfile_363495063</originalsourceid><addsrcrecordid>eNqNyrsKwjAUgOEgCtbLOxzcC2nTxjqL4ujg5iAxPbGxNUeT4O3pRfABnH74-HssyXlZpaISRZ8lmZwXacZLOWSjEM6cy4znImH7racz6mjvCOHldOPJ2beKlhzU1hj06CIYr_SXVAdkQIGmy7XDJziMD_ItPGxsgHyNHnSjKICjGsOEDYzqAk5_HbPZerVbblLdkDvdrDsdjkq3xnZ4EFIUi5JL8df0AaNcRJs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Projective synchronization different fractional of a complex network with order chaos nodes</title><source>IOP Publishing Journals</source><creator>王明军 王兴元 牛玉军</creator><creatorcontrib>王明军 王兴元 牛玉军</creatorcontrib><description>Based on the stability theory of the linear fractional order system, projective synchronization of a complex network is studied in the paper, and the coupling functions of the connected nodes are identified. With this method, the projective synchronization of the network with different fractional order chaos nodes can be achieved, besides, the number of the nodes does not affect the stability of the whole network. In the numerical simulations, the chaotic fractional order Lu system, Liu system and Coullet system are chosen as examples to show the effectiveness of the scheme.</description><identifier>ISSN: 1674-1056</identifier><identifier>EISSN: 2058-3834</identifier><language>eng</language><subject>Coullet系统 ; 分数阶 ; 复杂网络 ; 投影同步 ; 稳定性理论 ; 线性系统 ; 连接节点</subject><ispartof>Chinese physics B, 2011, Vol.20 (1), p.224-228</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85823A/85823A.jpg</thumbnail><link.rule.ids>314,780,784,4024</link.rule.ids></links><search><creatorcontrib>王明军 王兴元 牛玉军</creatorcontrib><title>Projective synchronization different fractional of a complex network with order chaos nodes</title><title>Chinese physics B</title><addtitle>Chinese Physics</addtitle><description>Based on the stability theory of the linear fractional order system, projective synchronization of a complex network is studied in the paper, and the coupling functions of the connected nodes are identified. With this method, the projective synchronization of the network with different fractional order chaos nodes can be achieved, besides, the number of the nodes does not affect the stability of the whole network. In the numerical simulations, the chaotic fractional order Lu system, Liu system and Coullet system are chosen as examples to show the effectiveness of the scheme.</description><subject>Coullet系统</subject><subject>分数阶</subject><subject>复杂网络</subject><subject>投影同步</subject><subject>稳定性理论</subject><subject>线性系统</subject><subject>连接节点</subject><issn>1674-1056</issn><issn>2058-3834</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNyrsKwjAUgOEgCtbLOxzcC2nTxjqL4ujg5iAxPbGxNUeT4O3pRfABnH74-HssyXlZpaISRZ8lmZwXacZLOWSjEM6cy4znImH7racz6mjvCOHldOPJ2beKlhzU1hj06CIYr_SXVAdkQIGmy7XDJziMD_ItPGxsgHyNHnSjKICjGsOEDYzqAk5_HbPZerVbblLdkDvdrDsdjkq3xnZ4EFIUi5JL8df0AaNcRJs</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>王明军 王兴元 牛玉军</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope></search><sort><creationdate>2011</creationdate><title>Projective synchronization different fractional of a complex network with order chaos nodes</title><author>王明军 王兴元 牛玉军</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-chongqing_backfile_363495063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Coullet系统</topic><topic>分数阶</topic><topic>复杂网络</topic><topic>投影同步</topic><topic>稳定性理论</topic><topic>线性系统</topic><topic>连接节点</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>王明军 王兴元 牛玉军</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><jtitle>Chinese physics B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>王明军 王兴元 牛玉军</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Projective synchronization different fractional of a complex network with order chaos nodes</atitle><jtitle>Chinese physics B</jtitle><addtitle>Chinese Physics</addtitle><date>2011</date><risdate>2011</risdate><volume>20</volume><issue>1</issue><spage>224</spage><epage>228</epage><pages>224-228</pages><issn>1674-1056</issn><eissn>2058-3834</eissn><abstract>Based on the stability theory of the linear fractional order system, projective synchronization of a complex network is studied in the paper, and the coupling functions of the connected nodes are identified. With this method, the projective synchronization of the network with different fractional order chaos nodes can be achieved, besides, the number of the nodes does not affect the stability of the whole network. In the numerical simulations, the chaotic fractional order Lu system, Liu system and Coullet system are chosen as examples to show the effectiveness of the scheme.</abstract></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-1056 |
ispartof | Chinese physics B, 2011, Vol.20 (1), p.224-228 |
issn | 1674-1056 2058-3834 |
language | eng |
recordid | cdi_chongqing_backfile_36349506 |
source | IOP Publishing Journals |
subjects | Coullet系统 分数阶 复杂网络 投影同步 稳定性理论 线性系统 连接节点 |
title | Projective synchronization different fractional of a complex network with order chaos nodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A45%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-chongqing&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Projective%20synchronization%20different%20fractional%20of%20a%20complex%20network%20with%20order%20chaos%20nodes&rft.jtitle=Chinese%20physics%20B&rft.au=%E7%8E%8B%E6%98%8E%E5%86%9B%20%E7%8E%8B%E5%85%B4%E5%85%83%20%E7%89%9B%E7%8E%89%E5%86%9B&rft.date=2011&rft.volume=20&rft.issue=1&rft.spage=224&rft.epage=228&rft.pages=224-228&rft.issn=1674-1056&rft.eissn=2058-3834&rft_id=info:doi/&rft_dat=%3Cchongqing%3E36349506%3C/chongqing%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=36349506&rfr_iscdi=true |