Projective synchronization different fractional of a complex network with order chaos nodes

Based on the stability theory of the linear fractional order system, projective synchronization of a complex network is studied in the paper, and the coupling functions of the connected nodes are identified. With this method, the projective synchronization of the network with different fractional or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese physics B 2011, Vol.20 (1), p.224-228
1. Verfasser: 王明军 王兴元 牛玉军
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 228
container_issue 1
container_start_page 224
container_title Chinese physics B
container_volume 20
creator 王明军 王兴元 牛玉军
description Based on the stability theory of the linear fractional order system, projective synchronization of a complex network is studied in the paper, and the coupling functions of the connected nodes are identified. With this method, the projective synchronization of the network with different fractional order chaos nodes can be achieved, besides, the number of the nodes does not affect the stability of the whole network. In the numerical simulations, the chaotic fractional order Lu system, Liu system and Coullet system are chosen as examples to show the effectiveness of the scheme.
format Article
fullrecord <record><control><sourceid>chongqing</sourceid><recordid>TN_cdi_chongqing_backfile_36349506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>36349506</cqvip_id><sourcerecordid>36349506</sourcerecordid><originalsourceid>FETCH-chongqing_backfile_363495063</originalsourceid><addsrcrecordid>eNqNyrsKwjAUgOEgCtbLOxzcC2nTxjqL4ujg5iAxPbGxNUeT4O3pRfABnH74-HssyXlZpaISRZ8lmZwXacZLOWSjEM6cy4znImH7racz6mjvCOHldOPJ2beKlhzU1hj06CIYr_SXVAdkQIGmy7XDJziMD_ItPGxsgHyNHnSjKICjGsOEDYzqAk5_HbPZerVbblLdkDvdrDsdjkq3xnZ4EFIUi5JL8df0AaNcRJs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Projective synchronization different fractional of a complex network with order chaos nodes</title><source>IOP Publishing Journals</source><creator>王明军 王兴元 牛玉军</creator><creatorcontrib>王明军 王兴元 牛玉军</creatorcontrib><description>Based on the stability theory of the linear fractional order system, projective synchronization of a complex network is studied in the paper, and the coupling functions of the connected nodes are identified. With this method, the projective synchronization of the network with different fractional order chaos nodes can be achieved, besides, the number of the nodes does not affect the stability of the whole network. In the numerical simulations, the chaotic fractional order Lu system, Liu system and Coullet system are chosen as examples to show the effectiveness of the scheme.</description><identifier>ISSN: 1674-1056</identifier><identifier>EISSN: 2058-3834</identifier><language>eng</language><subject>Coullet系统 ; 分数阶 ; 复杂网络 ; 投影同步 ; 稳定性理论 ; 线性系统 ; 连接节点</subject><ispartof>Chinese physics B, 2011, Vol.20 (1), p.224-228</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85823A/85823A.jpg</thumbnail><link.rule.ids>314,780,784,4024</link.rule.ids></links><search><creatorcontrib>王明军 王兴元 牛玉军</creatorcontrib><title>Projective synchronization different fractional of a complex network with order chaos nodes</title><title>Chinese physics B</title><addtitle>Chinese Physics</addtitle><description>Based on the stability theory of the linear fractional order system, projective synchronization of a complex network is studied in the paper, and the coupling functions of the connected nodes are identified. With this method, the projective synchronization of the network with different fractional order chaos nodes can be achieved, besides, the number of the nodes does not affect the stability of the whole network. In the numerical simulations, the chaotic fractional order Lu system, Liu system and Coullet system are chosen as examples to show the effectiveness of the scheme.</description><subject>Coullet系统</subject><subject>分数阶</subject><subject>复杂网络</subject><subject>投影同步</subject><subject>稳定性理论</subject><subject>线性系统</subject><subject>连接节点</subject><issn>1674-1056</issn><issn>2058-3834</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNyrsKwjAUgOEgCtbLOxzcC2nTxjqL4ujg5iAxPbGxNUeT4O3pRfABnH74-HssyXlZpaISRZ8lmZwXacZLOWSjEM6cy4znImH7racz6mjvCOHldOPJ2beKlhzU1hj06CIYr_SXVAdkQIGmy7XDJziMD_ItPGxsgHyNHnSjKICjGsOEDYzqAk5_HbPZerVbblLdkDvdrDsdjkq3xnZ4EFIUi5JL8df0AaNcRJs</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>王明军 王兴元 牛玉军</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope></search><sort><creationdate>2011</creationdate><title>Projective synchronization different fractional of a complex network with order chaos nodes</title><author>王明军 王兴元 牛玉军</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-chongqing_backfile_363495063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Coullet系统</topic><topic>分数阶</topic><topic>复杂网络</topic><topic>投影同步</topic><topic>稳定性理论</topic><topic>线性系统</topic><topic>连接节点</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>王明军 王兴元 牛玉军</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><jtitle>Chinese physics B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>王明军 王兴元 牛玉军</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Projective synchronization different fractional of a complex network with order chaos nodes</atitle><jtitle>Chinese physics B</jtitle><addtitle>Chinese Physics</addtitle><date>2011</date><risdate>2011</risdate><volume>20</volume><issue>1</issue><spage>224</spage><epage>228</epage><pages>224-228</pages><issn>1674-1056</issn><eissn>2058-3834</eissn><abstract>Based on the stability theory of the linear fractional order system, projective synchronization of a complex network is studied in the paper, and the coupling functions of the connected nodes are identified. With this method, the projective synchronization of the network with different fractional order chaos nodes can be achieved, besides, the number of the nodes does not affect the stability of the whole network. In the numerical simulations, the chaotic fractional order Lu system, Liu system and Coullet system are chosen as examples to show the effectiveness of the scheme.</abstract></addata></record>
fulltext fulltext
identifier ISSN: 1674-1056
ispartof Chinese physics B, 2011, Vol.20 (1), p.224-228
issn 1674-1056
2058-3834
language eng
recordid cdi_chongqing_backfile_36349506
source IOP Publishing Journals
subjects Coullet系统
分数阶
复杂网络
投影同步
稳定性理论
线性系统
连接节点
title Projective synchronization different fractional of a complex network with order chaos nodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A45%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-chongqing&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Projective%20synchronization%20different%20fractional%20of%20a%20complex%20network%20with%20order%20chaos%20nodes&rft.jtitle=Chinese%20physics%20B&rft.au=%E7%8E%8B%E6%98%8E%E5%86%9B%20%E7%8E%8B%E5%85%B4%E5%85%83%20%E7%89%9B%E7%8E%89%E5%86%9B&rft.date=2011&rft.volume=20&rft.issue=1&rft.spage=224&rft.epage=228&rft.pages=224-228&rft.issn=1674-1056&rft.eissn=2058-3834&rft_id=info:doi/&rft_dat=%3Cchongqing%3E36349506%3C/chongqing%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=36349506&rfr_iscdi=true