一种基于量子粒子群算法的SAR图像自聚焦方法

为了准确补偿合成孔径雷达(SAR,Synthetic Aperture Radar)回波数据中的相位误差,研究了一种实用的SAR图像自聚焦算法。该方法以量子粒子群算法(QPSO,Quantum-behaved Particle Swarm Optimization)为基础,利用最小熵准则作为评判标准,通过多维搜索完成相位误差校正。同传统的自聚焦方法相比,该方法具有较好的鲁棒性和收敛速度快的特点,对低频和高频相位误差都有非常好的补偿能力。仿真结果验证了该方法的有效性。...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Xi tong fang zhen xue bao 2010 (4), p.1055-1059
1. Verfasser: 谭覃燕 宋耀良
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:为了准确补偿合成孔径雷达(SAR,Synthetic Aperture Radar)回波数据中的相位误差,研究了一种实用的SAR图像自聚焦算法。该方法以量子粒子群算法(QPSO,Quantum-behaved Particle Swarm Optimization)为基础,利用最小熵准则作为评判标准,通过多维搜索完成相位误差校正。同传统的自聚焦方法相比,该方法具有较好的鲁棒性和收敛速度快的特点,对低频和高频相位误差都有非常好的补偿能力。仿真结果验证了该方法的有效性。
ISSN:1004-731X