New Solitary Solutions of (2+1)-Dimensional Variable Coefficient Nonlinear Schrodinger Equation with an External Potential
By a series of transformations, the (2+1)-dimensional variable coefficient nonlinear Schr?dinger equation can turn to the Klein-Gordon equation. Many new double travelling wave solutions of the Klein-Gordon equation are obtained. Thus, the new solitary solutions of the variable coefficient nonlinear...
Gespeichert in:
Veröffentlicht in: | Chinese physics letters 2010, Vol.27 (1), p.1-4 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Chinese physics letters |
container_volume | 27 |
creator | 宋朝晖 丁琦 梅建琴 张鸿庆 |
description | By a series of transformations, the (2+1)-dimensional variable coefficient nonlinear Schr?dinger equation can turn to the Klein-Gordon equation. Many new double travelling wave solutions of the Klein-Gordon equation are obtained. Thus, the new solitary solutions of the variable coefficient nonlinear Schr?inger equation with an external potential can be found. |
format | Article |
fullrecord | <record><control><sourceid>chongqing</sourceid><recordid>TN_cdi_chongqing_backfile_33008087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>33008087</cqvip_id><sourcerecordid>33008087</sourcerecordid><originalsourceid>FETCH-chongqing_backfile_330080873</originalsourceid><addsrcrecordid>eNqNjMFKw0AURYdiodH6Dw_3gZlOa7JvI66KUBF35TW-aZ5OZ-jMlOrOpeIv5Z_yCybgB7i6F-65ZyQyVcxVrhdzeSEyOVvc5loWzxNxGeOrlEqVSmXic01n2HjLCcPHUE6JvYvgDXTt16xrf1TXfucrPpCL_YIWnjAw7izB0pMxXDO5BGvvLDvCAJu6Cf6F3Z4CVMcTDj44c2oAHVTvicIgefCpvzHaqRgbtJGu__JK3NxVj8v7vG682x97z3aH9ZthS1utpSxlWeh_Qb8e2FSa</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>New Solitary Solutions of (2+1)-Dimensional Variable Coefficient Nonlinear Schrodinger Equation with an External Potential</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>宋朝晖 丁琦 梅建琴 张鸿庆</creator><creatorcontrib>宋朝晖 丁琦 梅建琴 张鸿庆</creatorcontrib><description>By a series of transformations, the (2+1)-dimensional variable coefficient nonlinear Schr?dinger equation can turn to the Klein-Gordon equation. Many new double travelling wave solutions of the Klein-Gordon equation are obtained. Thus, the new solitary solutions of the variable coefficient nonlinear Schr?inger equation with an external potential can be found.</description><identifier>ISSN: 0256-307X</identifier><identifier>EISSN: 1741-3540</identifier><language>eng</language><subject>Klein ; 变系数 ; 孤波解 ; 孤立波解 ; 行波解 ; 非线性Schrodinger方程 ; 非线性薛定谔方程</subject><ispartof>Chinese physics letters, 2010, Vol.27 (1), p.1-4</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/84212X/84212X.jpg</thumbnail><link.rule.ids>314,777,781,4010</link.rule.ids></links><search><creatorcontrib>宋朝晖 丁琦 梅建琴 张鸿庆</creatorcontrib><title>New Solitary Solutions of (2+1)-Dimensional Variable Coefficient Nonlinear Schrodinger Equation with an External Potential</title><title>Chinese physics letters</title><addtitle>Chinese Physics Letters</addtitle><description>By a series of transformations, the (2+1)-dimensional variable coefficient nonlinear Schr?dinger equation can turn to the Klein-Gordon equation. Many new double travelling wave solutions of the Klein-Gordon equation are obtained. Thus, the new solitary solutions of the variable coefficient nonlinear Schr?inger equation with an external potential can be found.</description><subject>Klein</subject><subject>变系数</subject><subject>孤波解</subject><subject>孤立波解</subject><subject>行波解</subject><subject>非线性Schrodinger方程</subject><subject>非线性薛定谔方程</subject><issn>0256-307X</issn><issn>1741-3540</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNjMFKw0AURYdiodH6Dw_3gZlOa7JvI66KUBF35TW-aZ5OZ-jMlOrOpeIv5Z_yCybgB7i6F-65ZyQyVcxVrhdzeSEyOVvc5loWzxNxGeOrlEqVSmXic01n2HjLCcPHUE6JvYvgDXTt16xrf1TXfucrPpCL_YIWnjAw7izB0pMxXDO5BGvvLDvCAJu6Cf6F3Z4CVMcTDj44c2oAHVTvicIgefCpvzHaqRgbtJGu__JK3NxVj8v7vG682x97z3aH9ZthS1utpSxlWeh_Qb8e2FSa</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>宋朝晖 丁琦 梅建琴 张鸿庆</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W94</scope><scope>~WA</scope></search><sort><creationdate>2010</creationdate><title>New Solitary Solutions of (2+1)-Dimensional Variable Coefficient Nonlinear Schrodinger Equation with an External Potential</title><author>宋朝晖 丁琦 梅建琴 张鸿庆</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-chongqing_backfile_330080873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Klein</topic><topic>变系数</topic><topic>孤波解</topic><topic>孤立波解</topic><topic>行波解</topic><topic>非线性Schrodinger方程</topic><topic>非线性薛定谔方程</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>宋朝晖 丁琦 梅建琴 张鸿庆</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-自然科学</collection><collection>中文科技期刊数据库- 镜像站点</collection><jtitle>Chinese physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>宋朝晖 丁琦 梅建琴 张鸿庆</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Solitary Solutions of (2+1)-Dimensional Variable Coefficient Nonlinear Schrodinger Equation with an External Potential</atitle><jtitle>Chinese physics letters</jtitle><addtitle>Chinese Physics Letters</addtitle><date>2010</date><risdate>2010</risdate><volume>27</volume><issue>1</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>0256-307X</issn><eissn>1741-3540</eissn><abstract>By a series of transformations, the (2+1)-dimensional variable coefficient nonlinear Schr?dinger equation can turn to the Klein-Gordon equation. Many new double travelling wave solutions of the Klein-Gordon equation are obtained. Thus, the new solitary solutions of the variable coefficient nonlinear Schr?inger equation with an external potential can be found.</abstract></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0256-307X |
ispartof | Chinese physics letters, 2010, Vol.27 (1), p.1-4 |
issn | 0256-307X 1741-3540 |
language | eng |
recordid | cdi_chongqing_backfile_33008087 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Klein 变系数 孤波解 孤立波解 行波解 非线性Schrodinger方程 非线性薛定谔方程 |
title | New Solitary Solutions of (2+1)-Dimensional Variable Coefficient Nonlinear Schrodinger Equation with an External Potential |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T00%3A14%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-chongqing&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Solitary%20Solutions%20of%20%EF%BC%882%EF%BC%8B1%EF%BC%89-Dimensional%20Variable%20Coefficient%20Nonlinear%20Schrodinger%20Equation%20with%20an%20External%20Potential&rft.jtitle=Chinese%20physics%20letters&rft.au=%E5%AE%8B%E6%9C%9D%E6%99%96%20%E4%B8%81%E7%90%A6%20%E6%A2%85%E5%BB%BA%E7%90%B4%20%E5%BC%A0%E9%B8%BF%E5%BA%86&rft.date=2010&rft.volume=27&rft.issue=1&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=0256-307X&rft.eissn=1741-3540&rft_id=info:doi/&rft_dat=%3Cchongqing%3E33008087%3C/chongqing%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=33008087&rfr_iscdi=true |