Simple recursive algorithm for linear-in-the-parameters nonlinear model identification
This paper introduces a simple recursive algorithm for nonlinear dynamic system identification using linear-in-the-parameters models for NARX or RBF network where both the structure and parameters can be obtained simultaneously and recursively. The main objective is to improve the numerical stabilit...
Gespeichert in:
Veröffentlicht in: | Science in China. Series F, Information sciences Information sciences, 2009 (10), p.1739-1745 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1745 |
---|---|
container_issue | 10 |
container_start_page | 1739 |
container_title | Science in China. Series F, Information sciences |
container_volume | |
creator | LI PingKang JIN TaoTao DU XiuXia |
description | This paper introduces a simple recursive algorithm for nonlinear dynamic system identification using linear-in-the-parameters models for NARX or RBF network where both the structure and parameters can be obtained simultaneously and recursively. The main objective is to improve the numerical stability when the model terms are highly correlated. This is based on the "innovation" idea and net contribution criteria. Using the recursive formulae for the computation of the Moore-Penrose inverse of matrices and the net contribution of model terms, it is possible to combine the structure term determination and parameters estimation within one framework by adding and deleting an item in the selected candidate model. The formulae for enhancing and reducing a matrix are given. Simulation results show the proposed method is numerically more stable than existing approaches. |
format | Article |
fullrecord | <record><control><sourceid>chongqing</sourceid><recordid>TN_cdi_chongqing_backfile_31781877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>31781877</cqvip_id><sourcerecordid>31781877</sourcerecordid><originalsourceid>FETCH-chongqing_backfile_317818773</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMoWD93CO4DbapNXIviXnFbYvraPs2nJtHzK-gBXM3AzIhkhaw447Ksxh_P8y3jYiOmZBbjLc_XnJdFRi4ntIMBGkA_Q8QXUGU6HzD1lrY-UIMOVGDoWOqBDSooCwlCpM67b6PWN2AoNuAStqhVQu8WZNIqE2H545ysDvvz7sh07133QNfVV6XvLRqoy0LIQgpR_jW9ARBQQsc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Simple recursive algorithm for linear-in-the-parameters nonlinear model identification</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>LI PingKang JIN TaoTao DU XiuXia</creator><creatorcontrib>LI PingKang JIN TaoTao DU XiuXia</creatorcontrib><description>This paper introduces a simple recursive algorithm for nonlinear dynamic system identification using linear-in-the-parameters models for NARX or RBF network where both the structure and parameters can be obtained simultaneously and recursively. The main objective is to improve the numerical stability when the model terms are highly correlated. This is based on the "innovation" idea and net contribution criteria. Using the recursive formulae for the computation of the Moore-Penrose inverse of matrices and the net contribution of model terms, it is possible to combine the structure term determination and parameters estimation within one framework by adding and deleting an item in the selected candidate model. The formulae for enhancing and reducing a matrix are given. Simulation results show the proposed method is numerically more stable than existing approaches.</description><identifier>ISSN: 1009-2757</identifier><identifier>EISSN: 1862-2836</identifier><language>eng</language><subject>动态系统辨识 ; 数值模型 ; 模型辨识 ; 稳定性条件 ; 网络模式 ; 递归公式 ; 递归算法 ; 非线性</subject><ispartof>Science in China. Series F, Information sciences, 2009 (10), p.1739-1745</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/84009X/84009X.jpg</thumbnail><link.rule.ids>314,776,780,4010</link.rule.ids></links><search><creatorcontrib>LI PingKang JIN TaoTao DU XiuXia</creatorcontrib><title>Simple recursive algorithm for linear-in-the-parameters nonlinear model identification</title><title>Science in China. Series F, Information sciences</title><addtitle>Science in China(Series F)</addtitle><description>This paper introduces a simple recursive algorithm for nonlinear dynamic system identification using linear-in-the-parameters models for NARX or RBF network where both the structure and parameters can be obtained simultaneously and recursively. The main objective is to improve the numerical stability when the model terms are highly correlated. This is based on the "innovation" idea and net contribution criteria. Using the recursive formulae for the computation of the Moore-Penrose inverse of matrices and the net contribution of model terms, it is possible to combine the structure term determination and parameters estimation within one framework by adding and deleting an item in the selected candidate model. The formulae for enhancing and reducing a matrix are given. Simulation results show the proposed method is numerically more stable than existing approaches.</description><subject>动态系统辨识</subject><subject>数值模型</subject><subject>模型辨识</subject><subject>稳定性条件</subject><subject>网络模式</subject><subject>递归公式</subject><subject>递归算法</subject><subject>非线性</subject><issn>1009-2757</issn><issn>1862-2836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNiksKwjAUAIMoWD93CO4DbapNXIviXnFbYvraPs2nJtHzK-gBXM3AzIhkhaw447Ksxh_P8y3jYiOmZBbjLc_XnJdFRi4ntIMBGkA_Q8QXUGU6HzD1lrY-UIMOVGDoWOqBDSooCwlCpM67b6PWN2AoNuAStqhVQu8WZNIqE2H545ysDvvz7sh07133QNfVV6XvLRqoy0LIQgpR_jW9ARBQQsc</recordid><startdate>2009</startdate><enddate>2009</enddate><creator>LI PingKang JIN TaoTao DU XiuXia</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope></search><sort><creationdate>2009</creationdate><title>Simple recursive algorithm for linear-in-the-parameters nonlinear model identification</title><author>LI PingKang JIN TaoTao DU XiuXia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-chongqing_backfile_317818773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>动态系统辨识</topic><topic>数值模型</topic><topic>模型辨识</topic><topic>稳定性条件</topic><topic>网络模式</topic><topic>递归公式</topic><topic>递归算法</topic><topic>非线性</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LI PingKang JIN TaoTao DU XiuXia</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><jtitle>Science in China. Series F, Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LI PingKang JIN TaoTao DU XiuXia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simple recursive algorithm for linear-in-the-parameters nonlinear model identification</atitle><jtitle>Science in China. Series F, Information sciences</jtitle><addtitle>Science in China(Series F)</addtitle><date>2009</date><risdate>2009</risdate><issue>10</issue><spage>1739</spage><epage>1745</epage><pages>1739-1745</pages><issn>1009-2757</issn><eissn>1862-2836</eissn><abstract>This paper introduces a simple recursive algorithm for nonlinear dynamic system identification using linear-in-the-parameters models for NARX or RBF network where both the structure and parameters can be obtained simultaneously and recursively. The main objective is to improve the numerical stability when the model terms are highly correlated. This is based on the "innovation" idea and net contribution criteria. Using the recursive formulae for the computation of the Moore-Penrose inverse of matrices and the net contribution of model terms, it is possible to combine the structure term determination and parameters estimation within one framework by adding and deleting an item in the selected candidate model. The formulae for enhancing and reducing a matrix are given. Simulation results show the proposed method is numerically more stable than existing approaches.</abstract></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1009-2757 |
ispartof | Science in China. Series F, Information sciences, 2009 (10), p.1739-1745 |
issn | 1009-2757 1862-2836 |
language | eng |
recordid | cdi_chongqing_backfile_31781877 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | 动态系统辨识 数值模型 模型辨识 稳定性条件 网络模式 递归公式 递归算法 非线性 |
title | Simple recursive algorithm for linear-in-the-parameters nonlinear model identification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A07%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-chongqing&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simple%20recursive%20algorithm%20for%20linear-in-the-parameters%20nonlinear%20model%20identification&rft.jtitle=Science%20in%20China.%20Series%20F,%20Information%20sciences&rft.au=LI%20PingKang%20JIN%20TaoTao%20DU%20XiuXia&rft.date=2009&rft.issue=10&rft.spage=1739&rft.epage=1745&rft.pages=1739-1745&rft.issn=1009-2757&rft.eissn=1862-2836&rft_id=info:doi/&rft_dat=%3Cchongqing%3E31781877%3C/chongqing%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=31781877&rfr_iscdi=true |