Simple recursive algorithm for linear-in-the-parameters nonlinear model identification

This paper introduces a simple recursive algorithm for nonlinear dynamic system identification using linear-in-the-parameters models for NARX or RBF network where both the structure and parameters can be obtained simultaneously and recursively. The main objective is to improve the numerical stabilit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science in China. Series F, Information sciences Information sciences, 2009 (10), p.1739-1745
1. Verfasser: LI PingKang JIN TaoTao DU XiuXia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1745
container_issue 10
container_start_page 1739
container_title Science in China. Series F, Information sciences
container_volume
creator LI PingKang JIN TaoTao DU XiuXia
description This paper introduces a simple recursive algorithm for nonlinear dynamic system identification using linear-in-the-parameters models for NARX or RBF network where both the structure and parameters can be obtained simultaneously and recursively. The main objective is to improve the numerical stability when the model terms are highly correlated. This is based on the "innovation" idea and net contribution criteria. Using the recursive formulae for the computation of the Moore-Penrose inverse of matrices and the net contribution of model terms, it is possible to combine the structure term determination and parameters estimation within one framework by adding and deleting an item in the selected candidate model. The formulae for enhancing and reducing a matrix are given. Simulation results show the proposed method is numerically more stable than existing approaches.
format Article
fullrecord <record><control><sourceid>chongqing</sourceid><recordid>TN_cdi_chongqing_backfile_31781877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>31781877</cqvip_id><sourcerecordid>31781877</sourcerecordid><originalsourceid>FETCH-chongqing_backfile_317818773</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMoWD93CO4DbapNXIviXnFbYvraPs2nJtHzK-gBXM3AzIhkhaw447Ksxh_P8y3jYiOmZBbjLc_XnJdFRi4ntIMBGkA_Q8QXUGU6HzD1lrY-UIMOVGDoWOqBDSooCwlCpM67b6PWN2AoNuAStqhVQu8WZNIqE2H545ysDvvz7sh07133QNfVV6XvLRqoy0LIQgpR_jW9ARBQQsc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Simple recursive algorithm for linear-in-the-parameters nonlinear model identification</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>LI PingKang JIN TaoTao DU XiuXia</creator><creatorcontrib>LI PingKang JIN TaoTao DU XiuXia</creatorcontrib><description>This paper introduces a simple recursive algorithm for nonlinear dynamic system identification using linear-in-the-parameters models for NARX or RBF network where both the structure and parameters can be obtained simultaneously and recursively. The main objective is to improve the numerical stability when the model terms are highly correlated. This is based on the "innovation" idea and net contribution criteria. Using the recursive formulae for the computation of the Moore-Penrose inverse of matrices and the net contribution of model terms, it is possible to combine the structure term determination and parameters estimation within one framework by adding and deleting an item in the selected candidate model. The formulae for enhancing and reducing a matrix are given. Simulation results show the proposed method is numerically more stable than existing approaches.</description><identifier>ISSN: 1009-2757</identifier><identifier>EISSN: 1862-2836</identifier><language>eng</language><subject>动态系统辨识 ; 数值模型 ; 模型辨识 ; 稳定性条件 ; 网络模式 ; 递归公式 ; 递归算法 ; 非线性</subject><ispartof>Science in China. Series F, Information sciences, 2009 (10), p.1739-1745</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/84009X/84009X.jpg</thumbnail><link.rule.ids>314,776,780,4010</link.rule.ids></links><search><creatorcontrib>LI PingKang JIN TaoTao DU XiuXia</creatorcontrib><title>Simple recursive algorithm for linear-in-the-parameters nonlinear model identification</title><title>Science in China. Series F, Information sciences</title><addtitle>Science in China(Series F)</addtitle><description>This paper introduces a simple recursive algorithm for nonlinear dynamic system identification using linear-in-the-parameters models for NARX or RBF network where both the structure and parameters can be obtained simultaneously and recursively. The main objective is to improve the numerical stability when the model terms are highly correlated. This is based on the "innovation" idea and net contribution criteria. Using the recursive formulae for the computation of the Moore-Penrose inverse of matrices and the net contribution of model terms, it is possible to combine the structure term determination and parameters estimation within one framework by adding and deleting an item in the selected candidate model. The formulae for enhancing and reducing a matrix are given. Simulation results show the proposed method is numerically more stable than existing approaches.</description><subject>动态系统辨识</subject><subject>数值模型</subject><subject>模型辨识</subject><subject>稳定性条件</subject><subject>网络模式</subject><subject>递归公式</subject><subject>递归算法</subject><subject>非线性</subject><issn>1009-2757</issn><issn>1862-2836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNiksKwjAUAIMoWD93CO4DbapNXIviXnFbYvraPs2nJtHzK-gBXM3AzIhkhaw447Ksxh_P8y3jYiOmZBbjLc_XnJdFRi4ntIMBGkA_Q8QXUGU6HzD1lrY-UIMOVGDoWOqBDSooCwlCpM67b6PWN2AoNuAStqhVQu8WZNIqE2H545ysDvvz7sh07133QNfVV6XvLRqoy0LIQgpR_jW9ARBQQsc</recordid><startdate>2009</startdate><enddate>2009</enddate><creator>LI PingKang JIN TaoTao DU XiuXia</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope></search><sort><creationdate>2009</creationdate><title>Simple recursive algorithm for linear-in-the-parameters nonlinear model identification</title><author>LI PingKang JIN TaoTao DU XiuXia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-chongqing_backfile_317818773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>动态系统辨识</topic><topic>数值模型</topic><topic>模型辨识</topic><topic>稳定性条件</topic><topic>网络模式</topic><topic>递归公式</topic><topic>递归算法</topic><topic>非线性</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LI PingKang JIN TaoTao DU XiuXia</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><jtitle>Science in China. Series F, Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LI PingKang JIN TaoTao DU XiuXia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simple recursive algorithm for linear-in-the-parameters nonlinear model identification</atitle><jtitle>Science in China. Series F, Information sciences</jtitle><addtitle>Science in China(Series F)</addtitle><date>2009</date><risdate>2009</risdate><issue>10</issue><spage>1739</spage><epage>1745</epage><pages>1739-1745</pages><issn>1009-2757</issn><eissn>1862-2836</eissn><abstract>This paper introduces a simple recursive algorithm for nonlinear dynamic system identification using linear-in-the-parameters models for NARX or RBF network where both the structure and parameters can be obtained simultaneously and recursively. The main objective is to improve the numerical stability when the model terms are highly correlated. This is based on the "innovation" idea and net contribution criteria. Using the recursive formulae for the computation of the Moore-Penrose inverse of matrices and the net contribution of model terms, it is possible to combine the structure term determination and parameters estimation within one framework by adding and deleting an item in the selected candidate model. The formulae for enhancing and reducing a matrix are given. Simulation results show the proposed method is numerically more stable than existing approaches.</abstract></addata></record>
fulltext fulltext
identifier ISSN: 1009-2757
ispartof Science in China. Series F, Information sciences, 2009 (10), p.1739-1745
issn 1009-2757
1862-2836
language eng
recordid cdi_chongqing_backfile_31781877
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects 动态系统辨识
数值模型
模型辨识
稳定性条件
网络模式
递归公式
递归算法
非线性
title Simple recursive algorithm for linear-in-the-parameters nonlinear model identification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A07%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-chongqing&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simple%20recursive%20algorithm%20for%20linear-in-the-parameters%20nonlinear%20model%20identification&rft.jtitle=Science%20in%20China.%20Series%20F,%20Information%20sciences&rft.au=LI%20PingKang%20JIN%20TaoTao%20DU%20XiuXia&rft.date=2009&rft.issue=10&rft.spage=1739&rft.epage=1745&rft.pages=1739-1745&rft.issn=1009-2757&rft.eissn=1862-2836&rft_id=info:doi/&rft_dat=%3Cchongqing%3E31781877%3C/chongqing%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=31781877&rfr_iscdi=true