Exact Two-Soliton Solutions for Discrete mKdV Equation
An exact two-soliton solution of discrete mKdv equation is derived by using the Hirota direct approach. In addition, we plot the soliton solutions to discuss the properties of solitons. It is worth while noting that we obtain the completely elastic interaction between the two solitons.
Gespeichert in:
Veröffentlicht in: | Communications in theoretical physics 2008-06, Vol.49 (6), p.1553-1556 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1556 |
---|---|
container_issue | 6 |
container_start_page | 1553 |
container_title | Communications in theoretical physics |
container_volume | 49 |
creator | Qin, Yang Hai-Jun, Zhang |
description | An exact two-soliton solution of discrete mKdv equation is derived by using the Hirota direct approach. In addition, we plot the soliton solutions to discuss the properties of solitons. It is worth while noting that we obtain the completely elastic interaction between the two solitons. |
doi_str_mv | 10.1088/0253-6102/49/6/42 |
format | Article |
fullrecord | <record><control><sourceid>iop_chong</sourceid><recordid>TN_cdi_chongqing_backfile_27587515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>27587515</cqvip_id><sourcerecordid>10_1088_0253_6102_49_6_42</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-442bcfb23af936d738c061546363f541c75e9fcb6a2fdce930b2df3b45c746a3</originalsourceid><addsrcrecordid>eNqNjz1PwzAYhD2ARAn8ADaLiYEQfycZUQkfohIDEatlO3YxtHEapwL-PYlasXRhOune517dAXCB0Q1GRZEhwmkqMCIZKzORMXIEZn_eCTiN8QMhRHKBZ0BU38oMsP4K6WtY-SG0cNTt4EMboQs9vPPR9HawcP3cvMFqs1XT7QwcO7WK9nyvCajvq3r-mC5eHp7mt4vUkJINKWNEG6cJVa6koslpYZDAnAkqqOMMm5zb0hktFHGNsSVFmjSOasZNzoSiCcC7t6YPMfbWya73a9X_SIzktFVOu-S0S7JSCsnImLneZXzo_oVfHeIHmOzGWgm43Ld5D-1y49ul1Mp8Or-ykuS8yDnm9Bc5TG3O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Exact Two-Soliton Solutions for Discrete mKdV Equation</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><source>Alma/SFX Local Collection</source><creator>Qin, Yang ; Hai-Jun, Zhang</creator><creatorcontrib>Qin, Yang ; Hai-Jun, Zhang</creatorcontrib><description>An exact two-soliton solution of discrete mKdv equation is derived by using the Hirota direct approach. In addition, we plot the soliton solutions to discuss the properties of solitons. It is worth while noting that we obtain the completely elastic interaction between the two solitons.</description><identifier>ISSN: 0253-6102</identifier><identifier>DOI: 10.1088/0253-6102/49/6/42</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Hirota径直算法 ; mKdV方程 ; 孤立子 ; 离散方程</subject><ispartof>Communications in theoretical physics, 2008-06, Vol.49 (6), p.1553-1556</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c294t-442bcfb23af936d738c061546363f541c75e9fcb6a2fdce930b2df3b45c746a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/83837X/83837X.jpg</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0253-6102/49/6/42/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53830,53910</link.rule.ids></links><search><creatorcontrib>Qin, Yang</creatorcontrib><creatorcontrib>Hai-Jun, Zhang</creatorcontrib><title>Exact Two-Soliton Solutions for Discrete mKdV Equation</title><title>Communications in theoretical physics</title><addtitle>Communications in Theoretical Physics</addtitle><description>An exact two-soliton solution of discrete mKdv equation is derived by using the Hirota direct approach. In addition, we plot the soliton solutions to discuss the properties of solitons. It is worth while noting that we obtain the completely elastic interaction between the two solitons.</description><subject>Hirota径直算法</subject><subject>mKdV方程</subject><subject>孤立子</subject><subject>离散方程</subject><issn>0253-6102</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNjz1PwzAYhD2ARAn8ADaLiYEQfycZUQkfohIDEatlO3YxtHEapwL-PYlasXRhOune517dAXCB0Q1GRZEhwmkqMCIZKzORMXIEZn_eCTiN8QMhRHKBZ0BU38oMsP4K6WtY-SG0cNTt4EMboQs9vPPR9HawcP3cvMFqs1XT7QwcO7WK9nyvCajvq3r-mC5eHp7mt4vUkJINKWNEG6cJVa6koslpYZDAnAkqqOMMm5zb0hktFHGNsSVFmjSOasZNzoSiCcC7t6YPMfbWya73a9X_SIzktFVOu-S0S7JSCsnImLneZXzo_oVfHeIHmOzGWgm43Ld5D-1y49ul1Mp8Or-ykuS8yDnm9Bc5TG3O</recordid><startdate>20080615</startdate><enddate>20080615</enddate><creator>Qin, Yang</creator><creator>Hai-Jun, Zhang</creator><general>IOP Publishing</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20080615</creationdate><title>Exact Two-Soliton Solutions for Discrete mKdV Equation</title><author>Qin, Yang ; Hai-Jun, Zhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-442bcfb23af936d738c061546363f541c75e9fcb6a2fdce930b2df3b45c746a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Hirota径直算法</topic><topic>mKdV方程</topic><topic>孤立子</topic><topic>离散方程</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin, Yang</creatorcontrib><creatorcontrib>Hai-Jun, Zhang</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><jtitle>Communications in theoretical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qin, Yang</au><au>Hai-Jun, Zhang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact Two-Soliton Solutions for Discrete mKdV Equation</atitle><jtitle>Communications in theoretical physics</jtitle><addtitle>Communications in Theoretical Physics</addtitle><date>2008-06-15</date><risdate>2008</risdate><volume>49</volume><issue>6</issue><spage>1553</spage><epage>1556</epage><pages>1553-1556</pages><issn>0253-6102</issn><abstract>An exact two-soliton solution of discrete mKdv equation is derived by using the Hirota direct approach. In addition, we plot the soliton solutions to discuss the properties of solitons. It is worth while noting that we obtain the completely elastic interaction between the two solitons.</abstract><pub>IOP Publishing</pub><doi>10.1088/0253-6102/49/6/42</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0253-6102 |
ispartof | Communications in theoretical physics, 2008-06, Vol.49 (6), p.1553-1556 |
issn | 0253-6102 |
language | eng |
recordid | cdi_chongqing_backfile_27587515 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link; Alma/SFX Local Collection |
subjects | Hirota径直算法 mKdV方程 孤立子 离散方程 |
title | Exact Two-Soliton Solutions for Discrete mKdV Equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A42%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_chong&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20Two-Soliton%20Solutions%20for%20Discrete%20mKdV%20Equation&rft.jtitle=Communications%20in%20theoretical%20physics&rft.au=Qin,%20Yang&rft.date=2008-06-15&rft.volume=49&rft.issue=6&rft.spage=1553&rft.epage=1556&rft.pages=1553-1556&rft.issn=0253-6102&rft_id=info:doi/10.1088/0253-6102/49/6/42&rft_dat=%3Ciop_chong%3E10_1088_0253_6102_49_6_42%3C/iop_chong%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=27587515&rfr_iscdi=true |