L^D MIXED-NORM ESTIMATES FOR CONVOLUTION OPERATOR DEFINED BY SINGULAR MEASURES

Let F be a C^∞ curve in IR^n and μ be the measure induced by Lebesgue measure on F, multiplied by a smooth cut-off function. In this paper, we will prove some mixednorm estimates based on the average decay estimates of the Fourier transform of μ.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analysis in theory & applications 2008, Vol.24 (1), p.50-54
1. Verfasser: Meifang Cheng Lisheng Shu
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let F be a C^∞ curve in IR^n and μ be the measure induced by Lebesgue measure on F, multiplied by a smooth cut-off function. In this paper, we will prove some mixednorm estimates based on the average decay estimates of the Fourier transform of μ.
ISSN:1672-4070
1573-8175