Preparation and Identification of HLA-A*1101 Tetramer Loading with Human Cytomegalovirus pp65 Antigen Peptide
MHC/peptide tetramer technology has been widely used to study antigen-specific T cells, especially for identifying virus-specific CD8^+ T cells in humans. The tetramer molecule is composed of HLA heavy chain, β2-microglobulin (β2m), an antigenic peptide, and fluorescent-labeled streptavidin. To furt...
Gespeichert in:
Veröffentlicht in: | Cellular & molecular immunology 2007, Vol.4 (2), p.141-146 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | MHC/peptide tetramer technology has been widely used to study antigen-specific T cells, especially for identifying virus-specific CD8^+ T cells in humans. The tetramer molecule is composed of HLA heavy chain, β2-microglobulin (β2m), an antigenic peptide, and fluorescent-labeled streptavidin. To further investigate the HLA-A*1101-restricted CD8^+ T cell responses against human cytomegalovirus (HCMV), we established an approach to prepare HLA-A*1101 tetramer complexed with a peptide from HCMV. The cDNA encoding HLA-A*1101 heavy chain was cloned and the prokaryotic expression vector for the ectodomain of HLA-A*1101 fused with a BirA substrate peptide (HLA-A*1101-BSP) at its carboxyl terminus was constructed. The fusion protein was highly expressed as inclusion bodies under optimized conditions in Escherichla coli. Moreover, HLA-A*1101-BSP protein was refolded in the presence of β2m and an HCMV peptide pp6516.24 (GPISGHVLK, GPI). Soluble HLA-A*1101-GPI monomer was biotinylated and purified to a purity of 95%, which was subsequently combined with streptavidin to form tetramers at a yield of 〉 80%. The HLA-A*1101-GPI tetramers could bind to virus-specific CD8^+ T cells, suggesting soluble HLA-A*1101-GPI tetramers were biologically functional. This study provides the basis for further evaluation of HLA-A*1101-restricted CD8^+ T cell responses against HCMV infection. |
---|---|
ISSN: | 1672-7681 2042-0226 |