Gazing-detection of human eyes based on SVM

A method for gazing-detection of human eyes using Support Vector Machine (SVM) based on statistic leaming theory (SLT) is proposed. According to the criteria of structural risk minimization of SVM,the errors between sample-data and model-data are minimized and the upper bound of predicting error of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:光电子快报:英文版 2005, Vol.1 (1), p.65-68
1. Verfasser: LI Su-mei ZHANG Yan-xin CHANG Sheng-jiang SHEN Jin-yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 68
container_issue 1
container_start_page 65
container_title 光电子快报:英文版
container_volume 1
creator LI Su-mei ZHANG Yan-xin CHANG Sheng-jiang SHEN Jin-yuan
description A method for gazing-detection of human eyes using Support Vector Machine (SVM) based on statistic leaming theory (SLT) is proposed. According to the criteria of structural risk minimization of SVM,the errors between sample-data and model-data are minimized and the upper bound of predicting error of the model is also reduced. As a result,the generalization ability of the model is much improved. The simulation results show that, when limited training samples are used, the correct recognition rate of the tested samples can be as high as 100% ,which is much better than some previous results obtained by other methods. The higher processing speed enables the system to distinguish gazing or not-gazing in real-time.
format Article
fullrecord <record><control><sourceid>chongqing</sourceid><recordid>TN_cdi_chongqing_backfile_20127609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>20127609</cqvip_id><sourcerecordid>20127609</sourcerecordid><originalsourceid>FETCH-chongqing_backfile_201276093</originalsourceid><addsrcrecordid>eNpjYeA0NDM31jW0NDDlYOAtLs5MMjAwNDQwMjM242TQdk-sysxL101JLUlNLsnMz1PIT1PIKM1NzFNIrUwtVkhKLE5NUQAKB4f58jCwpiXmFKfyQmluBiU31xBnD93kjPy89EKgMfFJicnZaZk5qfFGBoZG5mYGlsZEKQIAsFkv0Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Gazing-detection of human eyes based on SVM</title><source>Alma/SFX Local Collection</source><creator>LI Su-mei ZHANG Yan-xin CHANG Sheng-jiang SHEN Jin-yuan</creator><creatorcontrib>LI Su-mei ZHANG Yan-xin CHANG Sheng-jiang SHEN Jin-yuan</creatorcontrib><description>A method for gazing-detection of human eyes using Support Vector Machine (SVM) based on statistic leaming theory (SLT) is proposed. According to the criteria of structural risk minimization of SVM,the errors between sample-data and model-data are minimized and the upper bound of predicting error of the model is also reduced. As a result,the generalization ability of the model is much improved. The simulation results show that, when limited training samples are used, the correct recognition rate of the tested samples can be as high as 100% ,which is much better than some previous results obtained by other methods. The higher processing speed enables the system to distinguish gazing or not-gazing in real-time.</description><identifier>ISSN: 1673-1905</identifier><language>eng</language><subject>凝视检测 ; 向量支持装置 ; 识别系统</subject><ispartof>光电子快报:英文版, 2005, Vol.1 (1), p.65-68</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/88368X/88368X.jpg</thumbnail><link.rule.ids>314,776,780,4009</link.rule.ids></links><search><creatorcontrib>LI Su-mei ZHANG Yan-xin CHANG Sheng-jiang SHEN Jin-yuan</creatorcontrib><title>Gazing-detection of human eyes based on SVM</title><title>光电子快报:英文版</title><addtitle>Opto-electronics Letters</addtitle><description>A method for gazing-detection of human eyes using Support Vector Machine (SVM) based on statistic leaming theory (SLT) is proposed. According to the criteria of structural risk minimization of SVM,the errors between sample-data and model-data are minimized and the upper bound of predicting error of the model is also reduced. As a result,the generalization ability of the model is much improved. The simulation results show that, when limited training samples are used, the correct recognition rate of the tested samples can be as high as 100% ,which is much better than some previous results obtained by other methods. The higher processing speed enables the system to distinguish gazing or not-gazing in real-time.</description><subject>凝视检测</subject><subject>向量支持装置</subject><subject>识别系统</subject><issn>1673-1905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNpjYeA0NDM31jW0NDDlYOAtLs5MMjAwNDQwMjM242TQdk-sysxL101JLUlNLsnMz1PIT1PIKM1NzFNIrUwtVkhKLE5NUQAKB4f58jCwpiXmFKfyQmluBiU31xBnD93kjPy89EKgMfFJicnZaZk5qfFGBoZG5mYGlsZEKQIAsFkv0Q</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>LI Su-mei ZHANG Yan-xin CHANG Sheng-jiang SHEN Jin-yuan</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope></search><sort><creationdate>2005</creationdate><title>Gazing-detection of human eyes based on SVM</title><author>LI Su-mei ZHANG Yan-xin CHANG Sheng-jiang SHEN Jin-yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-chongqing_backfile_201276093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>凝视检测</topic><topic>向量支持装置</topic><topic>识别系统</topic><toplevel>online_resources</toplevel><creatorcontrib>LI Su-mei ZHANG Yan-xin CHANG Sheng-jiang SHEN Jin-yuan</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><jtitle>光电子快报:英文版</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LI Su-mei ZHANG Yan-xin CHANG Sheng-jiang SHEN Jin-yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gazing-detection of human eyes based on SVM</atitle><jtitle>光电子快报:英文版</jtitle><addtitle>Opto-electronics Letters</addtitle><date>2005</date><risdate>2005</risdate><volume>1</volume><issue>1</issue><spage>65</spage><epage>68</epage><pages>65-68</pages><issn>1673-1905</issn><abstract>A method for gazing-detection of human eyes using Support Vector Machine (SVM) based on statistic leaming theory (SLT) is proposed. According to the criteria of structural risk minimization of SVM,the errors between sample-data and model-data are minimized and the upper bound of predicting error of the model is also reduced. As a result,the generalization ability of the model is much improved. The simulation results show that, when limited training samples are used, the correct recognition rate of the tested samples can be as high as 100% ,which is much better than some previous results obtained by other methods. The higher processing speed enables the system to distinguish gazing or not-gazing in real-time.</abstract></addata></record>
fulltext fulltext
identifier ISSN: 1673-1905
ispartof 光电子快报:英文版, 2005, Vol.1 (1), p.65-68
issn 1673-1905
language eng
recordid cdi_chongqing_backfile_20127609
source Alma/SFX Local Collection
subjects 凝视检测
向量支持装置
识别系统
title Gazing-detection of human eyes based on SVM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T20%3A02%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-chongqing&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gazing-detection%20of%20human%20eyes%20based%20on%20SVM&rft.jtitle=%E5%85%89%E7%94%B5%E5%AD%90%E5%BF%AB%E6%8A%A5%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=LI%20Su-mei%20ZHANG%20Yan-xin%20CHANG%20Sheng-jiang%20SHEN%20Jin-yuan&rft.date=2005&rft.volume=1&rft.issue=1&rft.spage=65&rft.epage=68&rft.pages=65-68&rft.issn=1673-1905&rft_id=info:doi/&rft_dat=%3Cchongqing%3E20127609%3C/chongqing%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=20127609&rfr_iscdi=true