NONRANDOMIZED RESPONSE MODEL FOR COMPLEX SURVEY DESIGNS

Warner’s randomized response (RR) model is used to collect sensitive information for a broad range of surveys, but it possesses several limitations such as lack of reproducibility, higher costs and it is not feasible for mail questionnaires. To overcome such difficulties, nonrandomized response (NRR...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics in Transition New Series 2019-03, Vol.20 (1), p.67-86
Hauptverfasser: Arnab, Raghunath, Shangodoyin, D. K, Arcos, Antonio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 86
container_issue 1
container_start_page 67
container_title Statistics in Transition New Series
container_volume 20
creator Arnab, Raghunath
Shangodoyin, D. K
Arcos, Antonio
description Warner’s randomized response (RR) model is used to collect sensitive information for a broad range of surveys, but it possesses several limitations such as lack of reproducibility, higher costs and it is not feasible for mail questionnaires. To overcome such difficulties, nonrandomized response (NRR) surveys have been proposed. The proposed NRR surveys are limited to simple random sampling with replacement (SRSWR) design. In this paper, NRR procedures are extended to complex survey designs in a unified setup, which is applicable to any sampling design and wider classes of estimators. Existing results for NRR can be derived from the proposed method as special cases.
doi_str_mv 10.21307/stattrans-2019-004
format Article
fullrecord <record><control><sourceid>ceeol_cross</sourceid><recordid>TN_cdi_ceeol_journals_777993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A657476917</galeid><ceeol_id>777993</ceeol_id><sourcerecordid>777993</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3487-1228edf7211677805ab0a3ccf343e8dac10c4bd3ce3294671c5ef1f062e030df3</originalsourceid><addsrcrecordid>eNp9kFFPwjAUhRujiUT5BWqyPzC8bbd1e5PAQBLYCBOjvjSla8kIMNOOGP69nRB9M304TdPv3HsOQncYegRTYI-2EU1jxN76BHDiAwQXqEOCEHwgCb5EHUxo4LMoDK9R19oNAJCYBSyKO4hlebboZ8N8NvlIh94iLeZ5VqTeLB-mU2-UL7xBPptP0zevWC5e03dvmBaTcVbcoisttlZ1z3qDlqP0ZfDsT_PxZNCf-pIGMfMxIbEqNSMYR4zFEIoVCCqlpgFVcSkkBhmsSioVJUkQMSxDpbGGiCigUGp6g3on37XYKl7tde2SSndKtatkvVe6cu_9KGzzJJg5gJ4AaWprjdL801Q7YY4cA__pi__2xdu-uOvLUU8n6ktsG2VKtTaHo7vwTX0wexfwP9pp1A5-OFkot1ZleSu2qY37xhLSjrg_L6ZUvf0zZowlCaXf3hGEAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>NONRANDOMIZED RESPONSE MODEL FOR COMPLEX SURVEY DESIGNS</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Arnab, Raghunath ; Shangodoyin, D. K ; Arcos, Antonio</creator><creatorcontrib>Arnab, Raghunath ; Shangodoyin, D. K ; Arcos, Antonio</creatorcontrib><description>Warner’s randomized response (RR) model is used to collect sensitive information for a broad range of surveys, but it possesses several limitations such as lack of reproducibility, higher costs and it is not feasible for mail questionnaires. To overcome such difficulties, nonrandomized response (NRR) surveys have been proposed. The proposed NRR surveys are limited to simple random sampling with replacement (SRSWR) design. In this paper, NRR procedures are extended to complex survey designs in a unified setup, which is applicable to any sampling design and wider classes of estimators. Existing results for NRR can be derived from the proposed method as special cases.</description><identifier>ISSN: 1234-7655</identifier><identifier>ISSN: 2450-0291</identifier><identifier>EISSN: 2450-0291</identifier><identifier>DOI: 10.21307/stattrans-2019-004</identifier><language>eng</language><publisher>New York, NY: Statistics Poland</publisher><subject>62D05 ; complex survey designs ; Economy ; parallel model ; probability proportional to size ; randomized response ; varying probability sampling</subject><ispartof>Statistics in Transition New Series, 2019-03, Vol.20 (1), p.67-86</ispartof><rights>COPYRIGHT 2019 Exeley Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3487-1228edf7211677805ab0a3ccf343e8dac10c4bd3ce3294671c5ef1f062e030df3</citedby><cites>FETCH-LOGICAL-c3487-1228edf7211677805ab0a3ccf343e8dac10c4bd3ce3294671c5ef1f062e030df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.ceeol.com//api/image/getissuecoverimage?id=picture_2019_48176.jpeg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Arnab, Raghunath</creatorcontrib><creatorcontrib>Shangodoyin, D. K</creatorcontrib><creatorcontrib>Arcos, Antonio</creatorcontrib><title>NONRANDOMIZED RESPONSE MODEL FOR COMPLEX SURVEY DESIGNS</title><title>Statistics in Transition New Series</title><addtitle>Statistics in Transition New Series</addtitle><description>Warner’s randomized response (RR) model is used to collect sensitive information for a broad range of surveys, but it possesses several limitations such as lack of reproducibility, higher costs and it is not feasible for mail questionnaires. To overcome such difficulties, nonrandomized response (NRR) surveys have been proposed. The proposed NRR surveys are limited to simple random sampling with replacement (SRSWR) design. In this paper, NRR procedures are extended to complex survey designs in a unified setup, which is applicable to any sampling design and wider classes of estimators. Existing results for NRR can be derived from the proposed method as special cases.</description><subject>62D05</subject><subject>complex survey designs</subject><subject>Economy</subject><subject>parallel model</subject><subject>probability proportional to size</subject><subject>randomized response</subject><subject>varying probability sampling</subject><issn>1234-7655</issn><issn>2450-0291</issn><issn>2450-0291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>REL</sourceid><recordid>eNp9kFFPwjAUhRujiUT5BWqyPzC8bbd1e5PAQBLYCBOjvjSla8kIMNOOGP69nRB9M304TdPv3HsOQncYegRTYI-2EU1jxN76BHDiAwQXqEOCEHwgCb5EHUxo4LMoDK9R19oNAJCYBSyKO4hlebboZ8N8NvlIh94iLeZ5VqTeLB-mU2-UL7xBPptP0zevWC5e03dvmBaTcVbcoisttlZ1z3qDlqP0ZfDsT_PxZNCf-pIGMfMxIbEqNSMYR4zFEIoVCCqlpgFVcSkkBhmsSioVJUkQMSxDpbGGiCigUGp6g3on37XYKl7tde2SSndKtatkvVe6cu_9KGzzJJg5gJ4AaWprjdL801Q7YY4cA__pi__2xdu-uOvLUU8n6ktsG2VKtTaHo7vwTX0wexfwP9pp1A5-OFkot1ZleSu2qY37xhLSjrg_L6ZUvf0zZowlCaXf3hGEAw</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Arnab, Raghunath</creator><creator>Shangodoyin, D. K</creator><creator>Arcos, Antonio</creator><general>Statistics Poland</general><general>Główny Urząd Statystyczny</general><general>Exeley</general><general>Sciendo</general><general>Exeley Inc</general><scope>AE2</scope><scope>BIXPP</scope><scope>REL</scope><scope>OT2</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190301</creationdate><title>NONRANDOMIZED RESPONSE MODEL FOR COMPLEX SURVEY DESIGNS</title><author>Arnab, Raghunath ; Shangodoyin, D. K ; Arcos, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3487-1228edf7211677805ab0a3ccf343e8dac10c4bd3ce3294671c5ef1f062e030df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>62D05</topic><topic>complex survey designs</topic><topic>Economy</topic><topic>parallel model</topic><topic>probability proportional to size</topic><topic>randomized response</topic><topic>varying probability sampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arnab, Raghunath</creatorcontrib><creatorcontrib>Shangodoyin, D. K</creatorcontrib><creatorcontrib>Arcos, Antonio</creatorcontrib><collection>Central and Eastern European Online Library (C.E.E.O.L.) (DFG Nationallizenzen)</collection><collection>CEEOL: Open Access</collection><collection>Central and Eastern European Online Library - CEEOL Journals</collection><collection>EconStor</collection><collection>CrossRef</collection><jtitle>Statistics in Transition New Series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arnab, Raghunath</au><au>Shangodoyin, D. K</au><au>Arcos, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NONRANDOMIZED RESPONSE MODEL FOR COMPLEX SURVEY DESIGNS</atitle><jtitle>Statistics in Transition New Series</jtitle><addtitle>Statistics in Transition New Series</addtitle><date>2019-03-01</date><risdate>2019</risdate><volume>20</volume><issue>1</issue><spage>67</spage><epage>86</epage><pages>67-86</pages><issn>1234-7655</issn><issn>2450-0291</issn><eissn>2450-0291</eissn><abstract>Warner’s randomized response (RR) model is used to collect sensitive information for a broad range of surveys, but it possesses several limitations such as lack of reproducibility, higher costs and it is not feasible for mail questionnaires. To overcome such difficulties, nonrandomized response (NRR) surveys have been proposed. The proposed NRR surveys are limited to simple random sampling with replacement (SRSWR) design. In this paper, NRR procedures are extended to complex survey designs in a unified setup, which is applicable to any sampling design and wider classes of estimators. Existing results for NRR can be derived from the proposed method as special cases.</abstract><cop>New York, NY</cop><pub>Statistics Poland</pub><doi>10.21307/stattrans-2019-004</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1234-7655
ispartof Statistics in Transition New Series, 2019-03, Vol.20 (1), p.67-86
issn 1234-7655
2450-0291
2450-0291
language eng
recordid cdi_ceeol_journals_777993
source EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects 62D05
complex survey designs
Economy
parallel model
probability proportional to size
randomized response
varying probability sampling
title NONRANDOMIZED RESPONSE MODEL FOR COMPLEX SURVEY DESIGNS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T18%3A41%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ceeol_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NONRANDOMIZED%20RESPONSE%20MODEL%20FOR%20COMPLEX%20SURVEY%20DESIGNS&rft.jtitle=Statistics%20in%20Transition%20New%20Series&rft.au=Arnab,%20Raghunath&rft.date=2019-03-01&rft.volume=20&rft.issue=1&rft.spage=67&rft.epage=86&rft.pages=67-86&rft.issn=1234-7655&rft.eissn=2450-0291&rft_id=info:doi/10.21307/stattrans-2019-004&rft_dat=%3Cceeol_cross%3E777993%3C/ceeol_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A657476917&rft_ceeol_id=777993&rfr_iscdi=true