The Predictive Power of Macroeconomic Variables on the Indian Stock Market Utilizing an ANN Model Approach: An Empirical Investigation Based on BSE Sensex
Research background: The paper focuses on the use of Artificial Neural Networks (ANNs) for forecasting time series data of the stock market since ANNs are dynamic and are more capable of handling complex data sets in comparison to conventional forecasting techniques such as regression, Logistic regr...
Gespeichert in:
Veröffentlicht in: | Folia oeconomica stetinensia 2023-12, Vol.23 (2), p.116-131 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 131 |
---|---|
container_issue | 2 |
container_start_page | 116 |
container_title | Folia oeconomica stetinensia |
container_volume | 23 |
creator | Goel, Himanshu Agarwal, Monika Som, Bhupender Kumar |
description | Research background: The paper focuses on the use of Artificial Neural Networks (ANNs) for forecasting time series data of the stock market since ANNs are dynamic and are more capable of handling complex data sets in comparison to conventional forecasting techniques such as regression, Logistic regression, and have massive potential for the prediction of stock market prices. Purpose: Artificial neural networks are an effective method for forecasting time series. Therefore, this study aims to forecast the closing price of the BSE Sensex using artificial neural networks (ANNs). Research methodology: The study uses nine input variables, including macroeconomic and global stock market factors, to estimate the BSE Sensex using scaled conjugate gradient algorithm artificial neural networks (SCGANNs) and Bayesian regularized artificial neural networks (BRANN). Results: As per the empirical results of the study, the ANN model can forecast the closing values of the BSE Sensex with a Bayesian Regularization (BR) method with an accuracy of over 99 percent, thus leading to significant implications for domestic institutional investors (DIIs), foreign institutional investors (FIIs), investment houses, and so on. This study adds more value to the existing literature by proving that the BRANN models outperform SCGANN in stock market forecasting. Novelty: This is the first study to employ macroeconomic variables as input variables for predicting the Indian stock market using ANN. The study highlights the ANN model’s forecasting potential, giving investors robust and accurate stock value prediction capabilities. |
doi_str_mv | 10.2478/foli-2023-0022 |
format | Article |
fullrecord | <record><control><sourceid>ceeol_proqu</sourceid><recordid>TN_cdi_ceeol_journals_1216220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ceeol_id>1216220</ceeol_id><doaj_id>oai_doaj_org_article_ed284a9ec90a47fb86428ad3cddb878f</doaj_id><sourcerecordid>1216220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2272-7e72ad62fca09ff1755f330b3eab99bc2298bf4f670c9fc41b76a057e8dec34a3</originalsourceid><addsrcrecordid>eNpFkU9vEzEQxVcIJErplRuSJc5b_GeztrmlVSiR2lIpLVdr1h6nTjfrYG9L4aP009ZLKjh55HnvZ8-8qvrA6DFvpPrsYx9qTrmoKeX8VXXAlFY1ZVq9LrUUtG64kG-rdzlvKG25oPKgerq-RXKV0AU7hodSxl-YSPTkAmyKaOMQt8GSH5ACdD1mEgcyFstycAEGshqjvSvadIcjuRlDH_6EYU1KZ355SS6iw57Md7sUwd5-IfOBLLa7kIKFvhAeMI9hDWMozBPI6Cb4yWpBVjhkfHxfvfHQZzx6OQ-rm6-L69Nv9fn3s-Xp_Ly2nEteS5QcXMu9Baq9Z3I280LQTiB0WndFpFXnG99KarW3DetkC3QmUTm0ogFxWC33XBdhY3YpbCH9NhGC-XsR09pAGoPt0aDjqgGNVlNopO9U23AFTljnOiWVL6xPe1YZ-ed9mc9s4n0ayvcNV1q3rWwZK6rjvaqsOOeE_t-rjJopSzNlaaYszZRlMXx8MSDG_j-TcdZyTsUz3VedQQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899667611</pqid></control><display><type>article</type><title>The Predictive Power of Macroeconomic Variables on the Indian Stock Market Utilizing an ANN Model Approach: An Empirical Investigation Based on BSE Sensex</title><source>De Gruyter Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Business Source Complete</source><creator>Goel, Himanshu ; Agarwal, Monika ; Som, Bhupender Kumar</creator><creatorcontrib>Goel, Himanshu ; Agarwal, Monika ; Som, Bhupender Kumar</creatorcontrib><description>Research background: The paper focuses on the use of Artificial Neural Networks (ANNs) for forecasting time series data of the stock market since ANNs are dynamic and are more capable of handling complex data sets in comparison to conventional forecasting techniques such as regression, Logistic regression, and have massive potential for the prediction of stock market prices. Purpose: Artificial neural networks are an effective method for forecasting time series. Therefore, this study aims to forecast the closing price of the BSE Sensex using artificial neural networks (ANNs). Research methodology: The study uses nine input variables, including macroeconomic and global stock market factors, to estimate the BSE Sensex using scaled conjugate gradient algorithm artificial neural networks (SCGANNs) and Bayesian regularized artificial neural networks (BRANN). Results: As per the empirical results of the study, the ANN model can forecast the closing values of the BSE Sensex with a Bayesian Regularization (BR) method with an accuracy of over 99 percent, thus leading to significant implications for domestic institutional investors (DIIs), foreign institutional investors (FIIs), investment houses, and so on. This study adds more value to the existing literature by proving that the BRANN models outperform SCGANN in stock market forecasting. Novelty: This is the first study to employ macroeconomic variables as input variables for predicting the Indian stock market using ANN. The study highlights the ANN model’s forecasting potential, giving investors robust and accurate stock value prediction capabilities.</description><identifier>ISSN: 1730-4237</identifier><identifier>ISSN: 1898-0198</identifier><identifier>EISSN: 1898-0198</identifier><identifier>DOI: 10.2478/foli-2023-0022</identifier><language>eng</language><publisher>Szczecin: Wydawnictwo Naukowe Uniwersytetu Szczecińskiego</publisher><subject>Bayesian analysis ; bse sensex ; Business Economy / Management ; Economy ; Financial Markets ; Forecasting techniques ; Foreign exchange ; g170 ; index of industrial production ; Institutional investments ; macroeconomic variables ; Macroeconomics ; National Economy ; Neural networks ; prediction ; Prices ; Securities markets ; Time series ; Value ; Variables</subject><ispartof>Folia oeconomica stetinensia, 2023-12, Vol.23 (2), p.116-131</ispartof><rights>2023. This work is published under https://creativecommons.org/licenses/by-sa/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2272-7e72ad62fca09ff1755f330b3eab99bc2298bf4f670c9fc41b76a057e8dec34a3</cites><orcidid>0000-0001-9393-3157 ; 0000-0003-2841-411X ; 0000-0002-9523-0719 ; 0000-0002-0085-0799</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.ceeol.com//api/image/getissuecoverimage?id=picture_2023_80246.jpg</thumbnail><link.rule.ids>314,780,784,864,2100,27915,27916</link.rule.ids></links><search><creatorcontrib>Goel, Himanshu</creatorcontrib><creatorcontrib>Agarwal, Monika</creatorcontrib><creatorcontrib>Som, Bhupender Kumar</creatorcontrib><title>The Predictive Power of Macroeconomic Variables on the Indian Stock Market Utilizing an ANN Model Approach: An Empirical Investigation Based on BSE Sensex</title><title>Folia oeconomica stetinensia</title><addtitle>Folia Oeconomica Stetinensia</addtitle><description>Research background: The paper focuses on the use of Artificial Neural Networks (ANNs) for forecasting time series data of the stock market since ANNs are dynamic and are more capable of handling complex data sets in comparison to conventional forecasting techniques such as regression, Logistic regression, and have massive potential for the prediction of stock market prices. Purpose: Artificial neural networks are an effective method for forecasting time series. Therefore, this study aims to forecast the closing price of the BSE Sensex using artificial neural networks (ANNs). Research methodology: The study uses nine input variables, including macroeconomic and global stock market factors, to estimate the BSE Sensex using scaled conjugate gradient algorithm artificial neural networks (SCGANNs) and Bayesian regularized artificial neural networks (BRANN). Results: As per the empirical results of the study, the ANN model can forecast the closing values of the BSE Sensex with a Bayesian Regularization (BR) method with an accuracy of over 99 percent, thus leading to significant implications for domestic institutional investors (DIIs), foreign institutional investors (FIIs), investment houses, and so on. This study adds more value to the existing literature by proving that the BRANN models outperform SCGANN in stock market forecasting. Novelty: This is the first study to employ macroeconomic variables as input variables for predicting the Indian stock market using ANN. The study highlights the ANN model’s forecasting potential, giving investors robust and accurate stock value prediction capabilities.</description><subject>Bayesian analysis</subject><subject>bse sensex</subject><subject>Business Economy / Management</subject><subject>Economy</subject><subject>Financial Markets</subject><subject>Forecasting techniques</subject><subject>Foreign exchange</subject><subject>g170</subject><subject>index of industrial production</subject><subject>Institutional investments</subject><subject>macroeconomic variables</subject><subject>Macroeconomics</subject><subject>National Economy</subject><subject>Neural networks</subject><subject>prediction</subject><subject>Prices</subject><subject>Securities markets</subject><subject>Time series</subject><subject>Value</subject><subject>Variables</subject><issn>1730-4237</issn><issn>1898-0198</issn><issn>1898-0198</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>REL</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNpFkU9vEzEQxVcIJErplRuSJc5b_GeztrmlVSiR2lIpLVdr1h6nTjfrYG9L4aP009ZLKjh55HnvZ8-8qvrA6DFvpPrsYx9qTrmoKeX8VXXAlFY1ZVq9LrUUtG64kG-rdzlvKG25oPKgerq-RXKV0AU7hodSxl-YSPTkAmyKaOMQt8GSH5ACdD1mEgcyFstycAEGshqjvSvadIcjuRlDH_6EYU1KZ355SS6iw57Md7sUwd5-IfOBLLa7kIKFvhAeMI9hDWMozBPI6Cb4yWpBVjhkfHxfvfHQZzx6OQ-rm6-L69Nv9fn3s-Xp_Ly2nEteS5QcXMu9Baq9Z3I280LQTiB0WndFpFXnG99KarW3DetkC3QmUTm0ogFxWC33XBdhY3YpbCH9NhGC-XsR09pAGoPt0aDjqgGNVlNopO9U23AFTljnOiWVL6xPe1YZ-ed9mc9s4n0ayvcNV1q3rWwZK6rjvaqsOOeE_t-rjJopSzNlaaYszZRlMXx8MSDG_j-TcdZyTsUz3VedQQ</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Goel, Himanshu</creator><creator>Agarwal, Monika</creator><creator>Som, Bhupender Kumar</creator><general>Wydawnictwo Naukowe Uniwersytetu Szczecińskiego</general><general>Szczecin University Press</general><general>De Gruyter Poland</general><general>Sciendo</general><scope>AE2</scope><scope>BIXPP</scope><scope>REL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BYOGL</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9393-3157</orcidid><orcidid>https://orcid.org/0000-0003-2841-411X</orcidid><orcidid>https://orcid.org/0000-0002-9523-0719</orcidid><orcidid>https://orcid.org/0000-0002-0085-0799</orcidid></search><sort><creationdate>20231201</creationdate><title>The Predictive Power of Macroeconomic Variables on the Indian Stock Market Utilizing an ANN Model Approach: An Empirical Investigation Based on BSE Sensex</title><author>Goel, Himanshu ; Agarwal, Monika ; Som, Bhupender Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2272-7e72ad62fca09ff1755f330b3eab99bc2298bf4f670c9fc41b76a057e8dec34a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bayesian analysis</topic><topic>bse sensex</topic><topic>Business Economy / Management</topic><topic>Economy</topic><topic>Financial Markets</topic><topic>Forecasting techniques</topic><topic>Foreign exchange</topic><topic>g170</topic><topic>index of industrial production</topic><topic>Institutional investments</topic><topic>macroeconomic variables</topic><topic>Macroeconomics</topic><topic>National Economy</topic><topic>Neural networks</topic><topic>prediction</topic><topic>Prices</topic><topic>Securities markets</topic><topic>Time series</topic><topic>Value</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goel, Himanshu</creatorcontrib><creatorcontrib>Agarwal, Monika</creatorcontrib><creatorcontrib>Som, Bhupender Kumar</creatorcontrib><collection>Central and Eastern European Online Library (C.E.E.O.L.) (DFG Nationallizenzen)</collection><collection>CEEOL: Open Access</collection><collection>Central and Eastern European Online Library</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>East Europe, Central Europe Database</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Folia oeconomica stetinensia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goel, Himanshu</au><au>Agarwal, Monika</au><au>Som, Bhupender Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Predictive Power of Macroeconomic Variables on the Indian Stock Market Utilizing an ANN Model Approach: An Empirical Investigation Based on BSE Sensex</atitle><jtitle>Folia oeconomica stetinensia</jtitle><addtitle>Folia Oeconomica Stetinensia</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>23</volume><issue>2</issue><spage>116</spage><epage>131</epage><pages>116-131</pages><issn>1730-4237</issn><issn>1898-0198</issn><eissn>1898-0198</eissn><abstract>Research background: The paper focuses on the use of Artificial Neural Networks (ANNs) for forecasting time series data of the stock market since ANNs are dynamic and are more capable of handling complex data sets in comparison to conventional forecasting techniques such as regression, Logistic regression, and have massive potential for the prediction of stock market prices. Purpose: Artificial neural networks are an effective method for forecasting time series. Therefore, this study aims to forecast the closing price of the BSE Sensex using artificial neural networks (ANNs). Research methodology: The study uses nine input variables, including macroeconomic and global stock market factors, to estimate the BSE Sensex using scaled conjugate gradient algorithm artificial neural networks (SCGANNs) and Bayesian regularized artificial neural networks (BRANN). Results: As per the empirical results of the study, the ANN model can forecast the closing values of the BSE Sensex with a Bayesian Regularization (BR) method with an accuracy of over 99 percent, thus leading to significant implications for domestic institutional investors (DIIs), foreign institutional investors (FIIs), investment houses, and so on. This study adds more value to the existing literature by proving that the BRANN models outperform SCGANN in stock market forecasting. Novelty: This is the first study to employ macroeconomic variables as input variables for predicting the Indian stock market using ANN. The study highlights the ANN model’s forecasting potential, giving investors robust and accurate stock value prediction capabilities.</abstract><cop>Szczecin</cop><pub>Wydawnictwo Naukowe Uniwersytetu Szczecińskiego</pub><doi>10.2478/foli-2023-0022</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9393-3157</orcidid><orcidid>https://orcid.org/0000-0003-2841-411X</orcidid><orcidid>https://orcid.org/0000-0002-9523-0719</orcidid><orcidid>https://orcid.org/0000-0002-0085-0799</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1730-4237 |
ispartof | Folia oeconomica stetinensia, 2023-12, Vol.23 (2), p.116-131 |
issn | 1730-4237 1898-0198 1898-0198 |
language | eng |
recordid | cdi_ceeol_journals_1216220 |
source | De Gruyter Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Business Source Complete |
subjects | Bayesian analysis bse sensex Business Economy / Management Economy Financial Markets Forecasting techniques Foreign exchange g170 index of industrial production Institutional investments macroeconomic variables Macroeconomics National Economy Neural networks prediction Prices Securities markets Time series Value Variables |
title | The Predictive Power of Macroeconomic Variables on the Indian Stock Market Utilizing an ANN Model Approach: An Empirical Investigation Based on BSE Sensex |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T02%3A46%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ceeol_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Predictive%20Power%20of%20Macroeconomic%20Variables%20on%20the%20Indian%20Stock%20Market%20Utilizing%20an%20ANN%20Model%20Approach:%20An%20Empirical%20Investigation%20Based%20on%20BSE%20Sensex&rft.jtitle=Folia%20oeconomica%20stetinensia&rft.au=Goel,%20Himanshu&rft.date=2023-12-01&rft.volume=23&rft.issue=2&rft.spage=116&rft.epage=131&rft.pages=116-131&rft.issn=1730-4237&rft.eissn=1898-0198&rft_id=info:doi/10.2478/foli-2023-0022&rft_dat=%3Cceeol_proqu%3E1216220%3C/ceeol_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2899667611&rft_id=info:pmid/&rft_ceeol_id=1216220&rft_doaj_id=oai_doaj_org_article_ed284a9ec90a47fb86428ad3cddb878f&rfr_iscdi=true |