利用便捷式可见-近红外光谱仪和机器学习分辨霉变小麦及霉变程度
[目的/意义]可见-近红外光谱可对小麦霉变情况快速无损检测,但是高分辨率光谱仪价格高、体积大,不利于在农业环境中推广,因此通过对低分辨率光谱数据进行优化处理,以期接近高分辨率光谱仪分辨霉变小麦的效果。[方法]使用可见-近红外农产品检测仪(型号VNIAPD,分辨率1.6 nm)和复享光纤光谱仪(型号SIN02040,分辨率0.19 nm)采集100份小麦样本的新鲜状态以及不同霉变状态的光谱数据。首先对SINO2040光谱进行裁剪,让其和VNIAPD波长保持一致,均为640~1 050 nm;然后对其使用标准差标准化(Standard Deviation Normalization, SDN)、标...
Gespeichert in:
Veröffentlicht in: | 智慧农业(中英文) 2024-01, Vol.6 (1), p.89-100 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | chi |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!