Kirillov’s orbit method and polynomiality of the faithful dimension of $p$ -groups
Given a finite group $\text{G}$ and a field $K$ , the faithful dimension of $\text{G}$ over $K$ is defined to be the smallest integer $n$ such that $\text{G}$ embeds into $\operatorname{GL}_{n}(K)$ . We address the problem of determining the faithful dimension of a $p$ -group of the form $\mathscr{G...
Gespeichert in:
Veröffentlicht in: | Compositio mathematica 2019-08, Vol.155 (8), p.1618-1654 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1654 |
---|---|
container_issue | 8 |
container_start_page | 1618 |
container_title | Compositio mathematica |
container_volume | 155 |
creator | Bardestani, Mohammad Mallahi-Karai, Keivan Salmasian, Hadi |
description | Given a finite group
$\text{G}$
and a field
$K$
, the faithful dimension of
$\text{G}$
over
$K$
is defined to be the smallest integer
$n$
such that
$\text{G}$
embeds into
$\operatorname{GL}_{n}(K)$
. We address the problem of determining the faithful dimension of a
$p$
-group of the form
$\mathscr{G}_{q}:=\exp (\mathfrak{g}\otimes _{\mathbb{Z}}\mathbb{F}_{q})$
associated to
$\mathfrak{g}_{q}:=\mathfrak{g}\otimes _{\mathbb{Z}}\mathbb{F}_{q}$
in the Lazard correspondence, where
$\mathfrak{g}$
is a nilpotent
$\mathbb{Z}$
-Lie algebra which is finitely generated as an abelian group. We show that in general the faithful dimension of
$\mathscr{G}_{p}$
is a piecewise polynomial function of
$p$
on a partition of primes into Frobenius sets. Furthermore, we prove that for
$p$
sufficiently large, there exists a partition of
$\mathbb{N}$
by sets from the Boolean algebra generated by arithmetic progressions, such that on each part the faithful dimension of
$\mathscr{G}_{q}$
for
$q:=p^{f}$
is equal to
$fg(p^{f})$
for a polynomial
$g(T)$
. We show that for many naturally arising
$p$
-groups, including a vast class of groups defined by partial orders, the faithful dimension is given by a single formula of the latter form. The arguments rely on various tools from number theory, model theory, combinatorics and Lie theory. |
doi_str_mv | 10.1112/S0010437X19007462 |
format | Article |
fullrecord | <record><control><sourceid>cambridge</sourceid><recordid>TN_cdi_cambridge_journals_10_1112_S0010437X19007462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1112_S0010437X19007462</cupid><sourcerecordid>10_1112_S0010437X19007462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c129t-72e7aaef3c0ad54315b57035ec8c58111adcec503808323def5d128ffc7710263</originalsourceid><addsrcrecordid>eNplkLtOwzAYhS0EEqHwAGweugZ-23HsjqgCiqjEQJHYIseXxlUSR4mD1I3X4PV4EhLBxnSGTzo3hK4J3BBC6O0rAIGMiXeyAhBZTk9QQriAlMssP0XJjNOZn6OLYTgAAJVUJmj37Htf1-Hj-_NrwKEvfcSNjVUwWLUGd6E-tqHxqvbxiIPDsbLYKR8rN9bY-Ma2gw_tTJbdEqf7PozdcInOnKoHe_WnC_T2cL9bb9Lty-PT-m6bakJXMRXUCqWsYxqU4RkjvJwaM2611FxOs5TRVnNgEiSjzFjHDaHSOS0EAZqzBWK_vlo1Ze_N3haHMPbtlFkQKOZjin_HsB-rN1c-</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Kirillov’s orbit method and polynomiality of the faithful dimension of $p$ -groups</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Cambridge University Press Journals Complete</source><creator>Bardestani, Mohammad ; Mallahi-Karai, Keivan ; Salmasian, Hadi</creator><creatorcontrib>Bardestani, Mohammad ; Mallahi-Karai, Keivan ; Salmasian, Hadi</creatorcontrib><description>Given a finite group
$\text{G}$
and a field
$K$
, the faithful dimension of
$\text{G}$
over
$K$
is defined to be the smallest integer
$n$
such that
$\text{G}$
embeds into
$\operatorname{GL}_{n}(K)$
. We address the problem of determining the faithful dimension of a
$p$
-group of the form
$\mathscr{G}_{q}:=\exp (\mathfrak{g}\otimes _{\mathbb{Z}}\mathbb{F}_{q})$
associated to
$\mathfrak{g}_{q}:=\mathfrak{g}\otimes _{\mathbb{Z}}\mathbb{F}_{q}$
in the Lazard correspondence, where
$\mathfrak{g}$
is a nilpotent
$\mathbb{Z}$
-Lie algebra which is finitely generated as an abelian group. We show that in general the faithful dimension of
$\mathscr{G}_{p}$
is a piecewise polynomial function of
$p$
on a partition of primes into Frobenius sets. Furthermore, we prove that for
$p$
sufficiently large, there exists a partition of
$\mathbb{N}$
by sets from the Boolean algebra generated by arithmetic progressions, such that on each part the faithful dimension of
$\mathscr{G}_{q}$
for
$q:=p^{f}$
is equal to
$fg(p^{f})$
for a polynomial
$g(T)$
. We show that for many naturally arising
$p$
-groups, including a vast class of groups defined by partial orders, the faithful dimension is given by a single formula of the latter form. The arguments rely on various tools from number theory, model theory, combinatorics and Lie theory.</description><identifier>ISSN: 0010-437X</identifier><identifier>EISSN: 1570-5846</identifier><identifier>DOI: 10.1112/S0010437X19007462</identifier><language>eng</language><publisher>London, UK: London Mathematical Society</publisher><ispartof>Compositio mathematica, 2019-08, Vol.155 (8), p.1618-1654</ispartof><rights>The Authors 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0010437X19007462/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,315,781,785,27929,27930,55633</link.rule.ids></links><search><creatorcontrib>Bardestani, Mohammad</creatorcontrib><creatorcontrib>Mallahi-Karai, Keivan</creatorcontrib><creatorcontrib>Salmasian, Hadi</creatorcontrib><title>Kirillov’s orbit method and polynomiality of the faithful dimension of $p$ -groups</title><title>Compositio mathematica</title><addtitle>Compositio Math</addtitle><description>Given a finite group
$\text{G}$
and a field
$K$
, the faithful dimension of
$\text{G}$
over
$K$
is defined to be the smallest integer
$n$
such that
$\text{G}$
embeds into
$\operatorname{GL}_{n}(K)$
. We address the problem of determining the faithful dimension of a
$p$
-group of the form
$\mathscr{G}_{q}:=\exp (\mathfrak{g}\otimes _{\mathbb{Z}}\mathbb{F}_{q})$
associated to
$\mathfrak{g}_{q}:=\mathfrak{g}\otimes _{\mathbb{Z}}\mathbb{F}_{q}$
in the Lazard correspondence, where
$\mathfrak{g}$
is a nilpotent
$\mathbb{Z}$
-Lie algebra which is finitely generated as an abelian group. We show that in general the faithful dimension of
$\mathscr{G}_{p}$
is a piecewise polynomial function of
$p$
on a partition of primes into Frobenius sets. Furthermore, we prove that for
$p$
sufficiently large, there exists a partition of
$\mathbb{N}$
by sets from the Boolean algebra generated by arithmetic progressions, such that on each part the faithful dimension of
$\mathscr{G}_{q}$
for
$q:=p^{f}$
is equal to
$fg(p^{f})$
for a polynomial
$g(T)$
. We show that for many naturally arising
$p$
-groups, including a vast class of groups defined by partial orders, the faithful dimension is given by a single formula of the latter form. The arguments rely on various tools from number theory, model theory, combinatorics and Lie theory.</description><issn>0010-437X</issn><issn>1570-5846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNplkLtOwzAYhS0EEqHwAGweugZ-23HsjqgCiqjEQJHYIseXxlUSR4mD1I3X4PV4EhLBxnSGTzo3hK4J3BBC6O0rAIGMiXeyAhBZTk9QQriAlMssP0XJjNOZn6OLYTgAAJVUJmj37Htf1-Hj-_NrwKEvfcSNjVUwWLUGd6E-tqHxqvbxiIPDsbLYKR8rN9bY-Ma2gw_tTJbdEqf7PozdcInOnKoHe_WnC_T2cL9bb9Lty-PT-m6bakJXMRXUCqWsYxqU4RkjvJwaM2611FxOs5TRVnNgEiSjzFjHDaHSOS0EAZqzBWK_vlo1Ze_N3haHMPbtlFkQKOZjin_HsB-rN1c-</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Bardestani, Mohammad</creator><creator>Mallahi-Karai, Keivan</creator><creator>Salmasian, Hadi</creator><general>London Mathematical Society</general><scope/></search><sort><creationdate>201908</creationdate><title>Kirillov’s orbit method and polynomiality of the faithful dimension of $p$ -groups</title><author>Bardestani, Mohammad ; Mallahi-Karai, Keivan ; Salmasian, Hadi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c129t-72e7aaef3c0ad54315b57035ec8c58111adcec503808323def5d128ffc7710263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bardestani, Mohammad</creatorcontrib><creatorcontrib>Mallahi-Karai, Keivan</creatorcontrib><creatorcontrib>Salmasian, Hadi</creatorcontrib><jtitle>Compositio mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bardestani, Mohammad</au><au>Mallahi-Karai, Keivan</au><au>Salmasian, Hadi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kirillov’s orbit method and polynomiality of the faithful dimension of $p$ -groups</atitle><jtitle>Compositio mathematica</jtitle><addtitle>Compositio Math</addtitle><date>2019-08</date><risdate>2019</risdate><volume>155</volume><issue>8</issue><spage>1618</spage><epage>1654</epage><pages>1618-1654</pages><issn>0010-437X</issn><eissn>1570-5846</eissn><abstract>Given a finite group
$\text{G}$
and a field
$K$
, the faithful dimension of
$\text{G}$
over
$K$
is defined to be the smallest integer
$n$
such that
$\text{G}$
embeds into
$\operatorname{GL}_{n}(K)$
. We address the problem of determining the faithful dimension of a
$p$
-group of the form
$\mathscr{G}_{q}:=\exp (\mathfrak{g}\otimes _{\mathbb{Z}}\mathbb{F}_{q})$
associated to
$\mathfrak{g}_{q}:=\mathfrak{g}\otimes _{\mathbb{Z}}\mathbb{F}_{q}$
in the Lazard correspondence, where
$\mathfrak{g}$
is a nilpotent
$\mathbb{Z}$
-Lie algebra which is finitely generated as an abelian group. We show that in general the faithful dimension of
$\mathscr{G}_{p}$
is a piecewise polynomial function of
$p$
on a partition of primes into Frobenius sets. Furthermore, we prove that for
$p$
sufficiently large, there exists a partition of
$\mathbb{N}$
by sets from the Boolean algebra generated by arithmetic progressions, such that on each part the faithful dimension of
$\mathscr{G}_{q}$
for
$q:=p^{f}$
is equal to
$fg(p^{f})$
for a polynomial
$g(T)$
. We show that for many naturally arising
$p$
-groups, including a vast class of groups defined by partial orders, the faithful dimension is given by a single formula of the latter form. The arguments rely on various tools from number theory, model theory, combinatorics and Lie theory.</abstract><cop>London, UK</cop><pub>London Mathematical Society</pub><doi>10.1112/S0010437X19007462</doi><tpages>37</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-437X |
ispartof | Compositio mathematica, 2019-08, Vol.155 (8), p.1618-1654 |
issn | 0010-437X 1570-5846 |
language | eng |
recordid | cdi_cambridge_journals_10_1112_S0010437X19007462 |
source | EZB-FREE-00999 freely available EZB journals; Cambridge University Press Journals Complete |
title | Kirillov’s orbit method and polynomiality of the faithful dimension of $p$ -groups |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T18%3A18%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kirillov%E2%80%99s%20orbit%20method%20and%20polynomiality%20of%20the%20faithful%20dimension%20of%20$p$%20-groups&rft.jtitle=Compositio%20mathematica&rft.au=Bardestani,%20Mohammad&rft.date=2019-08&rft.volume=155&rft.issue=8&rft.spage=1618&rft.epage=1654&rft.pages=1618-1654&rft.issn=0010-437X&rft.eissn=1570-5846&rft_id=info:doi/10.1112/S0010437X19007462&rft_dat=%3Ccambridge%3E10_1112_S0010437X19007462%3C/cambridge%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1112_S0010437X19007462&rfr_iscdi=true |