Embeddings for the space $LD_\gamma ^{p}$ on sets of finite perimeter

Given an open set with finite perimeter $\Omega \subset {\open R}^n$, we consider the space $LD_\gamma ^{p}(\Omega )$, $1\les p

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 2020-10, Vol.150 (5), p.2442-2461
Hauptverfasser: Chemetov, Nikolai V., Mazzucato, Anna L.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2461
container_issue 5
container_start_page 2442
container_title Proceedings of the Royal Society of Edinburgh. Section A. Mathematics
container_volume 150
creator Chemetov, Nikolai V.
Mazzucato, Anna L.
description Given an open set with finite perimeter $\Omega \subset {\open R}^n$, we consider the space $LD_\gamma ^{p}(\Omega )$, $1\les p
doi_str_mv 10.1017/prm.2019.29
format Article
fullrecord <record><control><sourceid>cambridge</sourceid><recordid>TN_cdi_cambridge_journals_10_1017_prm_2019_29</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_prm_2019_29</cupid><sourcerecordid>10_1017_prm_2019_29</sourcerecordid><originalsourceid>FETCH-cambridge_journals_10_1017_prm_2019_293</originalsourceid><addsrcrecordid>eNqVzr0OgjAUhuHGaCL-TN7AGVjB06Iis2IcHB2NTYED1lggLU7GexcTb8DpG95veBhbcAw58njZWhMK5EkokgHz-CqOgpiL1ZB5GOE2EBzXYzZx7o6Im-069liamoyKQteVg7Kx0N0IXKtyAv-0l5dKGaPg-mrfPjQ1OOocNCWUutYdQUtWG-rIztioVA9H899OWXBIz7tjkCuTWV1UJO_N09Z9kxzl1yp7q_xapUiif_8f7HxGQQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Embeddings for the space $LD_\gamma ^{p}$ on sets of finite perimeter</title><source>Cambridge University Press Journals Complete</source><creator>Chemetov, Nikolai V. ; Mazzucato, Anna L.</creator><creatorcontrib>Chemetov, Nikolai V. ; Mazzucato, Anna L.</creatorcontrib><description>Given an open set with finite perimeter $\Omega \subset {\open R}^n$, we consider the space $LD_\gamma ^{p}(\Omega )$, $1\les p&lt;\infty $, of functions with pth-integrable deformation tensor on Ω and with pth-integrable trace value on the essential boundary of Ω. We establish the continuous embedding $LD_\gamma ^{p}(\Omega )\subset L^{pN/(N-1)}(\Omega )$. The space $LD_\gamma ^{p}(\Omega )$ and this embedding arise naturally in studying the motion of rigid bodies in a viscous, incompressible fluid.</description><identifier>ISSN: 0308-2105</identifier><identifier>EISSN: 1473-7124</identifier><identifier>DOI: 10.1017/prm.2019.29</identifier><language>eng</language><publisher>Edinburgh, UK: Royal Society of Edinburgh Scotland Foundation</publisher><ispartof>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, 2020-10, Vol.150 (5), p.2442-2461</ispartof><rights>Copyright © Royal Society of Edinburgh 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0308210519000295/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Chemetov, Nikolai V.</creatorcontrib><creatorcontrib>Mazzucato, Anna L.</creatorcontrib><title>Embeddings for the space $LD_\gamma ^{p}$ on sets of finite perimeter</title><title>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</title><addtitle>Proceedings of the Royal Society of Edinburgh: Section A Mathematics</addtitle><description>Given an open set with finite perimeter $\Omega \subset {\open R}^n$, we consider the space $LD_\gamma ^{p}(\Omega )$, $1\les p&lt;\infty $, of functions with pth-integrable deformation tensor on Ω and with pth-integrable trace value on the essential boundary of Ω. We establish the continuous embedding $LD_\gamma ^{p}(\Omega )\subset L^{pN/(N-1)}(\Omega )$. The space $LD_\gamma ^{p}(\Omega )$ and this embedding arise naturally in studying the motion of rigid bodies in a viscous, incompressible fluid.</description><issn>0308-2105</issn><issn>1473-7124</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqVzr0OgjAUhuHGaCL-TN7AGVjB06Iis2IcHB2NTYED1lggLU7GexcTb8DpG95veBhbcAw58njZWhMK5EkokgHz-CqOgpiL1ZB5GOE2EBzXYzZx7o6Im-069liamoyKQteVg7Kx0N0IXKtyAv-0l5dKGaPg-mrfPjQ1OOocNCWUutYdQUtWG-rIztioVA9H899OWXBIz7tjkCuTWV1UJO_N09Z9kxzl1yp7q_xapUiif_8f7HxGQQ</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Chemetov, Nikolai V.</creator><creator>Mazzucato, Anna L.</creator><general>Royal Society of Edinburgh Scotland Foundation</general><scope/></search><sort><creationdate>202010</creationdate><title>Embeddings for the space $LD_\gamma ^{p}$ on sets of finite perimeter</title><author>Chemetov, Nikolai V. ; Mazzucato, Anna L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-cambridge_journals_10_1017_prm_2019_293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chemetov, Nikolai V.</creatorcontrib><creatorcontrib>Mazzucato, Anna L.</creatorcontrib><jtitle>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chemetov, Nikolai V.</au><au>Mazzucato, Anna L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Embeddings for the space $LD_\gamma ^{p}$ on sets of finite perimeter</atitle><jtitle>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</jtitle><addtitle>Proceedings of the Royal Society of Edinburgh: Section A Mathematics</addtitle><date>2020-10</date><risdate>2020</risdate><volume>150</volume><issue>5</issue><spage>2442</spage><epage>2461</epage><pages>2442-2461</pages><issn>0308-2105</issn><eissn>1473-7124</eissn><abstract>Given an open set with finite perimeter $\Omega \subset {\open R}^n$, we consider the space $LD_\gamma ^{p}(\Omega )$, $1\les p&lt;\infty $, of functions with pth-integrable deformation tensor on Ω and with pth-integrable trace value on the essential boundary of Ω. We establish the continuous embedding $LD_\gamma ^{p}(\Omega )\subset L^{pN/(N-1)}(\Omega )$. The space $LD_\gamma ^{p}(\Omega )$ and this embedding arise naturally in studying the motion of rigid bodies in a viscous, incompressible fluid.</abstract><cop>Edinburgh, UK</cop><pub>Royal Society of Edinburgh Scotland Foundation</pub><doi>10.1017/prm.2019.29</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0308-2105
ispartof Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, 2020-10, Vol.150 (5), p.2442-2461
issn 0308-2105
1473-7124
language eng
recordid cdi_cambridge_journals_10_1017_prm_2019_29
source Cambridge University Press Journals Complete
title Embeddings for the space $LD_\gamma ^{p}$ on sets of finite perimeter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A36%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Embeddings%20for%20the%20space%20$LD_%5Cgamma%20%5E%7Bp%7D$%20on%20sets%20of%20finite%20perimeter&rft.jtitle=Proceedings%20of%20the%20Royal%20Society%20of%20Edinburgh.%20Section%20A.%20Mathematics&rft.au=Chemetov,%20Nikolai%20V.&rft.date=2020-10&rft.volume=150&rft.issue=5&rft.spage=2442&rft.epage=2461&rft.pages=2442-2461&rft.issn=0308-2105&rft.eissn=1473-7124&rft_id=info:doi/10.1017/prm.2019.29&rft_dat=%3Ccambridge%3E10_1017_prm_2019_29%3C/cambridge%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1017_prm_2019_29&rfr_iscdi=true