Role of surfactant-induced Marangoni stresses in drop-interface coalescence
We study the effect of surfactants on the dynamics of a drop-interface coalescence using full three-dimensional direct numerical simulations. We employ a hybrid interface-tracking/level-set method, which takes into account Marangoni stresses that arise from surface-tension gradients, interfacial and...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2021-10, Vol.925, Article 15 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Journal of fluid mechanics |
container_volume | 925 |
creator | Constante-Amores, C.R. Batchvarov, A. Kahouadji, L. Shin, S. Chergui, J. Juric, D. Matar, O.K. |
description | We study the effect of surfactants on the dynamics of a drop-interface coalescence using full three-dimensional direct numerical simulations. We employ a hybrid interface-tracking/level-set method, which takes into account Marangoni stresses that arise from surface-tension gradients, interfacial and bulk diffusion and sorption kinetic effects. We validate our predictions against the experimental data of Blanchette and Bigioni (Nat. Phys., vol. 2, issue 4, 2006, pp. 254–257) and perform a parametric study that demonstrates the delicate interplay between the flow fields and those associated with the surfactant bulk and interfacial concentrations. The results of this work unravel the crucial role of the Marangoni stresses in the flow physics of coalescence, with particular attention paid to their influence on the neck reopening dynamics in terms of stagnation-point inhibition, and near-neck vorticity generation. We demonstrate that surfactant-laden cases feature a rigidifying effect on the interface compared with the surfactant-free case, a mechanism that underpins the observed surfactant-induced phenomena. |
doi_str_mv | 10.1017/jfm.2021.682 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cambr</sourceid><recordid>TN_cdi_cambridge_journals_10_1017_jfm_2021_682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2021_682</cupid><sourcerecordid>2563504341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-bfcc85e13dd03367f7791cabd647f34ce985445c0ea8d90109938134a077bfa23</originalsourceid><addsrcrecordid>eNqNkE1r3DAQhkVJoZu0t_4AQ04h9Xb0Ycs-hiVfZEuhJGchy6NEy660keSW_vvKbEguOfQ0w_DMO--8hHylsKRA5feN3S0ZMLpsO_aBLKho-1q2ojkiCwDGakoZfCLHKW0AKIdeLsjdr7DFKtgqTdFqk7XPtfPjZHCsfuio_WPwrko5YkqYKuerMYZ9QTLOPFYm6C0mg97gZ_LR6m3CLy_1hDxcXd6vbur1z-vb1cW6NlyKXA_WmK5ByscROG-llbKnRg9jK6TlwmDfNUI0BlB3Yw8U-p53lAsNUg5WM35Czg66T3qr9tHtdPyrgnbq5mKt5hlwKkTbyd-0sKcHdh_D84Qpq02Yoi_2FGta3oDgYqa-HSgTQ0oR7assBTVHq0q0ao5WlWgLfn7A_-AQbDJu_v51BQDKbdZBXzqYxbv_p1cu6-yCX4XJ57K6fPGld0N04yO-2X_X2T-qGprS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2563504341</pqid></control><display><type>article</type><title>Role of surfactant-induced Marangoni stresses in drop-interface coalescence</title><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Cambridge University Press Journals Complete</source><creator>Constante-Amores, C.R. ; Batchvarov, A. ; Kahouadji, L. ; Shin, S. ; Chergui, J. ; Juric, D. ; Matar, O.K.</creator><creatorcontrib>Constante-Amores, C.R. ; Batchvarov, A. ; Kahouadji, L. ; Shin, S. ; Chergui, J. ; Juric, D. ; Matar, O.K.</creatorcontrib><description>We study the effect of surfactants on the dynamics of a drop-interface coalescence using full three-dimensional direct numerical simulations. We employ a hybrid interface-tracking/level-set method, which takes into account Marangoni stresses that arise from surface-tension gradients, interfacial and bulk diffusion and sorption kinetic effects. We validate our predictions against the experimental data of Blanchette and Bigioni (Nat. Phys., vol. 2, issue 4, 2006, pp. 254–257) and perform a parametric study that demonstrates the delicate interplay between the flow fields and those associated with the surfactant bulk and interfacial concentrations. The results of this work unravel the crucial role of the Marangoni stresses in the flow physics of coalescence, with particular attention paid to their influence on the neck reopening dynamics in terms of stagnation-point inhibition, and near-neck vorticity generation. We demonstrate that surfactant-laden cases feature a rigidifying effect on the interface compared with the surfactant-free case, a mechanism that underpins the observed surfactant-induced phenomena.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2021.682</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Chemical engineering ; Chemical Sciences ; Coalescence ; Coalescing ; Diffusion effects ; Direct numerical simulation ; Dynamics ; Engineering Sciences ; JFM Papers ; Mechanics ; Nonlinear Sciences ; Numerical analysis ; Physical Sciences ; Physics ; Physics, Fluids & Plasmas ; Science & Technology ; Stresses ; Surfactants ; Technology ; Tracking ; Viscosity ; Vorticity</subject><ispartof>Journal of fluid mechanics, 2021-10, Vol.925, Article 15</ispartof><rights>The Author(s), 2021. Published by Cambridge University Press</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>24</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000687280900001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c374t-bfcc85e13dd03367f7791cabd647f34ce985445c0ea8d90109938134a077bfa23</citedby><cites>FETCH-LOGICAL-c374t-bfcc85e13dd03367f7791cabd647f34ce985445c0ea8d90109938134a077bfa23</cites><orcidid>0000-0002-9196-3966 ; 0000-0003-3703-0601 ; 0000-0002-7978-819X ; 0000-0002-1578-6435 ; 0000-0002-0530-8317 ; 0000-0001-8805-1192 ; 0000-0003-2476-5633</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112021006820/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,230,315,781,785,886,27929,27930,39263,55633</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03144687$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Constante-Amores, C.R.</creatorcontrib><creatorcontrib>Batchvarov, A.</creatorcontrib><creatorcontrib>Kahouadji, L.</creatorcontrib><creatorcontrib>Shin, S.</creatorcontrib><creatorcontrib>Chergui, J.</creatorcontrib><creatorcontrib>Juric, D.</creatorcontrib><creatorcontrib>Matar, O.K.</creatorcontrib><title>Role of surfactant-induced Marangoni stresses in drop-interface coalescence</title><title>Journal of fluid mechanics</title><addtitle>J FLUID MECH</addtitle><addtitle>J. Fluid Mech</addtitle><description>We study the effect of surfactants on the dynamics of a drop-interface coalescence using full three-dimensional direct numerical simulations. We employ a hybrid interface-tracking/level-set method, which takes into account Marangoni stresses that arise from surface-tension gradients, interfacial and bulk diffusion and sorption kinetic effects. We validate our predictions against the experimental data of Blanchette and Bigioni (Nat. Phys., vol. 2, issue 4, 2006, pp. 254–257) and perform a parametric study that demonstrates the delicate interplay between the flow fields and those associated with the surfactant bulk and interfacial concentrations. The results of this work unravel the crucial role of the Marangoni stresses in the flow physics of coalescence, with particular attention paid to their influence on the neck reopening dynamics in terms of stagnation-point inhibition, and near-neck vorticity generation. We demonstrate that surfactant-laden cases feature a rigidifying effect on the interface compared with the surfactant-free case, a mechanism that underpins the observed surfactant-induced phenomena.</description><subject>Chemical engineering</subject><subject>Chemical Sciences</subject><subject>Coalescence</subject><subject>Coalescing</subject><subject>Diffusion effects</subject><subject>Direct numerical simulation</subject><subject>Dynamics</subject><subject>Engineering Sciences</subject><subject>JFM Papers</subject><subject>Mechanics</subject><subject>Nonlinear Sciences</subject><subject>Numerical analysis</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Fluids & Plasmas</subject><subject>Science & Technology</subject><subject>Stresses</subject><subject>Surfactants</subject><subject>Technology</subject><subject>Tracking</subject><subject>Viscosity</subject><subject>Vorticity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkE1r3DAQhkVJoZu0t_4AQ04h9Xb0Ycs-hiVfZEuhJGchy6NEy660keSW_vvKbEguOfQ0w_DMO--8hHylsKRA5feN3S0ZMLpsO_aBLKho-1q2ojkiCwDGakoZfCLHKW0AKIdeLsjdr7DFKtgqTdFqk7XPtfPjZHCsfuio_WPwrko5YkqYKuerMYZ9QTLOPFYm6C0mg97gZ_LR6m3CLy_1hDxcXd6vbur1z-vb1cW6NlyKXA_WmK5ByscROG-llbKnRg9jK6TlwmDfNUI0BlB3Yw8U-p53lAsNUg5WM35Czg66T3qr9tHtdPyrgnbq5mKt5hlwKkTbyd-0sKcHdh_D84Qpq02Yoi_2FGta3oDgYqa-HSgTQ0oR7assBTVHq0q0ao5WlWgLfn7A_-AQbDJu_v51BQDKbdZBXzqYxbv_p1cu6-yCX4XJ57K6fPGld0N04yO-2X_X2T-qGprS</recordid><startdate>20211025</startdate><enddate>20211025</enddate><creator>Constante-Amores, C.R.</creator><creator>Batchvarov, A.</creator><creator>Kahouadji, L.</creator><creator>Shin, S.</creator><creator>Chergui, J.</creator><creator>Juric, D.</creator><creator>Matar, O.K.</creator><general>Cambridge University Press</general><general>Cambridge Univ Press</general><general>Cambridge University Press (CUP)</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9196-3966</orcidid><orcidid>https://orcid.org/0000-0003-3703-0601</orcidid><orcidid>https://orcid.org/0000-0002-7978-819X</orcidid><orcidid>https://orcid.org/0000-0002-1578-6435</orcidid><orcidid>https://orcid.org/0000-0002-0530-8317</orcidid><orcidid>https://orcid.org/0000-0001-8805-1192</orcidid><orcidid>https://orcid.org/0000-0003-2476-5633</orcidid></search><sort><creationdate>20211025</creationdate><title>Role of surfactant-induced Marangoni stresses in drop-interface coalescence</title><author>Constante-Amores, C.R. ; Batchvarov, A. ; Kahouadji, L. ; Shin, S. ; Chergui, J. ; Juric, D. ; Matar, O.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-bfcc85e13dd03367f7791cabd647f34ce985445c0ea8d90109938134a077bfa23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemical engineering</topic><topic>Chemical Sciences</topic><topic>Coalescence</topic><topic>Coalescing</topic><topic>Diffusion effects</topic><topic>Direct numerical simulation</topic><topic>Dynamics</topic><topic>Engineering Sciences</topic><topic>JFM Papers</topic><topic>Mechanics</topic><topic>Nonlinear Sciences</topic><topic>Numerical analysis</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Fluids & Plasmas</topic><topic>Science & Technology</topic><topic>Stresses</topic><topic>Surfactants</topic><topic>Technology</topic><topic>Tracking</topic><topic>Viscosity</topic><topic>Vorticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Constante-Amores, C.R.</creatorcontrib><creatorcontrib>Batchvarov, A.</creatorcontrib><creatorcontrib>Kahouadji, L.</creatorcontrib><creatorcontrib>Shin, S.</creatorcontrib><creatorcontrib>Chergui, J.</creatorcontrib><creatorcontrib>Juric, D.</creatorcontrib><creatorcontrib>Matar, O.K.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Constante-Amores, C.R.</au><au>Batchvarov, A.</au><au>Kahouadji, L.</au><au>Shin, S.</au><au>Chergui, J.</au><au>Juric, D.</au><au>Matar, O.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of surfactant-induced Marangoni stresses in drop-interface coalescence</atitle><jtitle>Journal of fluid mechanics</jtitle><stitle>J FLUID MECH</stitle><addtitle>J. Fluid Mech</addtitle><date>2021-10-25</date><risdate>2021</risdate><volume>925</volume><artnum>15</artnum><artnum>A15</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>We study the effect of surfactants on the dynamics of a drop-interface coalescence using full three-dimensional direct numerical simulations. We employ a hybrid interface-tracking/level-set method, which takes into account Marangoni stresses that arise from surface-tension gradients, interfacial and bulk diffusion and sorption kinetic effects. We validate our predictions against the experimental data of Blanchette and Bigioni (Nat. Phys., vol. 2, issue 4, 2006, pp. 254–257) and perform a parametric study that demonstrates the delicate interplay between the flow fields and those associated with the surfactant bulk and interfacial concentrations. The results of this work unravel the crucial role of the Marangoni stresses in the flow physics of coalescence, with particular attention paid to their influence on the neck reopening dynamics in terms of stagnation-point inhibition, and near-neck vorticity generation. We demonstrate that surfactant-laden cases feature a rigidifying effect on the interface compared with the surfactant-free case, a mechanism that underpins the observed surfactant-induced phenomena.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2021.682</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-9196-3966</orcidid><orcidid>https://orcid.org/0000-0003-3703-0601</orcidid><orcidid>https://orcid.org/0000-0002-7978-819X</orcidid><orcidid>https://orcid.org/0000-0002-1578-6435</orcidid><orcidid>https://orcid.org/0000-0002-0530-8317</orcidid><orcidid>https://orcid.org/0000-0001-8805-1192</orcidid><orcidid>https://orcid.org/0000-0003-2476-5633</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2021-10, Vol.925, Article 15 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_cambridge_journals_10_1017_jfm_2021_682 |
source | Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Cambridge University Press Journals Complete |
subjects | Chemical engineering Chemical Sciences Coalescence Coalescing Diffusion effects Direct numerical simulation Dynamics Engineering Sciences JFM Papers Mechanics Nonlinear Sciences Numerical analysis Physical Sciences Physics Physics, Fluids & Plasmas Science & Technology Stresses Surfactants Technology Tracking Viscosity Vorticity |
title | Role of surfactant-induced Marangoni stresses in drop-interface coalescence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T17%3A02%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cambr&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20surfactant-induced%20Marangoni%20stresses%20in%20drop-interface%20coalescence&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Constante-Amores,%20C.R.&rft.date=2021-10-25&rft.volume=925&rft.artnum=15&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2021.682&rft_dat=%3Cproquest_cambr%3E2563504341%3C/proquest_cambr%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2563504341&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2021_682&rfr_iscdi=true |